ترغب بنشر مسار تعليمي؟ اضغط هنا

Holographic Entanglement of Purification from Conformal Field Theories

151   0   0.0 ( 0 )
 نشر من قبل Tadashi Takayanagi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore a conformal field theoretic interpretation of the holographic entanglement of purification, which is defined as the minimal area of entanglement wedge cross section. We argue that in AdS3/CFT2, the holographic entanglement of purification agrees with the entanglement entropy for a purified state, obtained from a special Weyl transformation, called path-integral optimizations. By definition, this special purified state has the minimal path-integral complexity. We confirm this claim in several examples.



قيم البحث

اقرأ أيضاً

Finding pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace is necessarily a challenging task. Nevertheless, such purifications play the key role in characterizing quantum information-theo retic properties of mixed states via entanglement and complexity of purifications. In this article, we analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories using, for the first time, the~most general Gaussian purifications. We provide a comprehensive comparison with existing results and identify universal properties. We further discuss important subtleties in our setup: the massless limit of the free bosonic theory and the corresponding behaviour of the mutual information, as well as the Hilbert space structure under the Jordan-Wigner mapping in the spin chain model of the Ising conformal field theory.
We compute the entanglement of purification (EoP) in a 2d free scalar field theory with various masses. This quantity measures correlations between two subsystems and is reduced to the entanglement entropy when the total system is pure. We obtain exp licit numerical values by assuming minimal gaussian wave functionals for the purified states. We find that when the distance between the subsystems is large, the EoP behaves like the mutual information. However, when the distance is small, the EoP shows a characteristic behavior which qualitatively agrees with the conjectured holographic computation and which is different from that of the mutual information. We also study behaviors of mutual information in purified spaces and violations of monogamy/strong superadditivity.
We derive dynamics of the entanglement wedge cross section directly from the two-dimensional holographic CFTs with a local operator quench. This derivation is based on the reflected entropy, a correlation measure for mixed states. We further compare these results with the mutual information and ones for RCFTs. Our results directly suggest the classical correlation also plays an important role in the subregion/subregion duality even for dynamical setup. Besides a local operator quench, we study the reflected entropy in a heavy state and provide improved bulk interpretation. We checked the above results also hold for the odd entanglement entropy, which is another measure for mixed states related to the entanglement wedge cross section.
The loss of criticality in the form of weak first-order transitions or the end of the conformal window in gauge theories can be described as the merging of two fixed points that move to complex values of the couplings. When the complex fixed points a re close to the real axis, the system typically exhibits walking behavior with Miransky (or Berezinsky-Kosterlitz-Thouless) scaling. We present a novel realization of these phenomena at strong coupling by means of the gauge/gravity duality, and give evidence for the conjectured existence of complex conformal field theories at the fixed points.
We introduce a new optimization procedure for Euclidean path integrals which compute wave functionals in conformal field theories (CFTs). We optimize the background metric in the space on which the path integration is performed. Equivalently this is interpreted as a position-dependent UV cutoff. For two-dimensional CFT vacua, we find the optimized metric is given by that of a hyperbolic space and we interpret this as a continuous limit of the conjectured relation between tensor networks and Anti--de Sitter (AdS)/conformal field theory (CFT) correspondence. We confirm our procedure for excited states, the thermofield double state, the Sachdev-Ye-Kitaev model and discuss its extension to higher-dimensional CFTs. We also show that when applied to reduced density matrices, it reproduces entanglement wedges and holographic entanglement entropy. We suggest that our optimization prescription is analogous to the estimation of computational complexity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا