ترغب بنشر مسار تعليمي؟ اضغط هنا

Holographic dual to charged SYK from 3D Gravity and Chern-Simons

75   0   0.0 ( 0 )
 نشر من قبل Adwait Gaikwad
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we obtain a bulk dual to SYK model, including SYK model with $U(1)$ charge, by Kaluza-Klein (KK) reduction from three dimensions. We show that KK reduction of the 3D Einstein action plus its boundary term gives the Jackiw-Teitelboim (JT) model in 2D with the appropriate 1D boundary term. The size of the KK radius gets identified with the value of the dilaton in the resulting near-AdS$_2$ geometry. In presence of U(1) charge, the 3D model additionally includes a $U(1)$ Chern-Simons (CS) action. In order to describe a boundary theory with non-zero chemical potential, we also introduce a coupling between CS gauge field and bulk gravity. The 3D CS action plus the new coupling term with appropriate boundary terms reduce in two dimensions to a BF-type action plus a source term and boundary terms. The KK reduced 2D theory represents the soft sector of the charged SYK model. The pseudo-Nambu-Goldstone modes of combined $textit{Diff} /mathbb{SL}(2,mathbb{R})$ and $U(1)_{rm local}/U(1)$ transformations are represented by combined large diffeomorphisms and large gauge transformations. The effective action of the former is reproduced by the action cost of the latter in the bulk dual, after appropriate identification of parameters. We compute chaotic correlators from the bulk and reproduce the result that the contribution from the boundary photons corresponds to zero Liapunov exponent.



قيم البحث

اقرأ أيضاً

We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7-branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for two-dimensional QCD.
The gravitational part of the holographic dual to the SYK model has been conjectured to be Jackiw-Teitelboim (JT) gravity. In this paper we construct an AdS2 background in N = (2,2) JT gravity and show that the gravitational dynamics are - as in the N = 0 and N = 1 cases - fully captured by the extrinsic curvature as an effective boundary action. This boundary term is given by the super-Schwarzian of the N = 2 SYK model, thereby providing further evidence of the JT/SYK duality. The chirality of this SYK model is reproduced by the inherent chirality of axial N = (2,2) supergravity.
273 - H. Afshar , B. Cvetkovic , S. Ertl 2011
We show that conformal Chern-Simons gravity in three dimensions has various holographic descriptions. They depend on the boundary conditions on the conformal equivalence class and the Weyl factor, even when the former is restricted to asymptotic Anti -deSitter behavior. For constant or fixed Weyl factor our results agree with a suitable scaling limit of topologically massive gravity results. For varying Weyl factor we find an enhancement of the asymptotic symmetry group, the details of which depend on certain choices. We focus on a particular example where an affine u(1) algebra related to holomorphic Weyl rescalings shifts one of the central charges by 1. The Weyl factor then behaves as a free chiral boson in the dual conformal field theory.
128 - Pablo Mora 2010
I present two calculations of the holographic Weyl anomalies induced by Chern-Simons gravity theories alternative to the ones presented in the literature. The calculations presented here rest on the extension from Chern-Simons to Transgression forms as lagrangians, motivated by gauge invariance, which automatically yields the boundary terms suitable to regularize the theory. The procedure followed here sheds light in the structure of Chern-Simons gravities and their regularization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا