ﻻ يوجد ملخص باللغة العربية
We address the system with two species of vector bosons in an optical lattice. In addition to the the standard parameters characterizing such a system, we are dealing here with the degree of atomic nonidentity, manifesting itself in the difference of tunneling amplitudes and on-site Coulomb interactions. We obtain a cascade of quantum phase transitions occurring with the increase in the degree of atomic nonidentity. In particular, we show that the phase diagram for strongly distinct atoms is qualitatively different from that for (nearly) identical atoms considered earlier. The resulting phase diagrams evolve from the images similar to the J. Miro-like paintings to K. Malewicz-like ones.
Concentrating on bosonic lattice systems, we ask whether and how Excited State Quantum Phase Transition (ESQPT) singularities occur in condensed matter systems with ground state QPTs. We study in particular the spectral singularities above the ground
We explore the phase diagram of two-component bosons with Feshbach resonant pairing interactions in an optical lattice. It has been shown in previous work to exhibit a rich variety of phases and phase transitions, including a paradigmatic Ising quant
Ultracold Fermi gases trapped in honeycomb optical lattices provide an intriguing scenario, where relativistic quantum electrodynamics can be tested. Here, we generalize this system to non-Abelian quantum electrodynamics, where massless Dirac fermion
We evaluate the microwave admittance of a one-dimensional chain of fluxonium qubits coupled by shared inductors. Despite its simplicity, this system exhibits a rich phase diagram. A critical applied magnetic flux separates a homogeneous ground state
We consider two species of hard-core bosons with density dependent hopping in a one-dimensional optical lattice, for which we propose experimental realizations using time-periodic driving. The quantum phase diagram for half-integer filling is determi