ﻻ يوجد ملخص باللغة العربية
Embedding a WS$_2$ monolayer in flakes of hexagonal boron nitride allowed us to resolve and study the photoluminescence response due to both singlet and triplet states of negatively charged excitons (trions) in this atomically thin semiconductor. The energy separation between the singlet and triplet states has been found to be relatively small reflecting rather weak effects of the electron-electron exchange interaction for the trion triplet in a WS$_2$ monolayer, which involves two electrons with the same spin but from different valleys. Polarization-resolved experiments demonstrate that the helicity of the excitation light is better preserved in the emission spectrum of the triplet trion than in that of the singlet trion. Finally, the singlet (intravalley) trions are found to be observable even at ambient conditions whereas the emission due to the triplet (intervalley) trions is only efficient at low temperatures.
We study fully hexagonal boron nitride (hBN)-encapsulated graphene spin valve devices at room temperature. The device consists of a graphene channel encapsulated between two crystalline hBN flakes; thick-hBN flake as a bottom gate dielectric substrat
We present the first study of the intrinsic electrical properties of WS$_2$ transistors fabricated with two different dielectric environments WS$_2$ on SiO$_2$ and WS$_2$ on h-BN/SiO$_2$, respectively. A comparative analysis of the electrical charact
Interference of double moire patterns of graphene (G) encapsulated by hexagonal boron nitride (BN) can alter the electronic structure features near the primary/secondary Dirac points and the electron-hole symmetry introduced by a single G/BN moire pa
We present a thermal annealing study on single-layer and bilayer (BLG) graphene encapsulated in hexagonal boron nitride. The samples are characterized by electron transport and Raman spectroscopy measurements before and after each annealing step. Whi
Unlike the electrical conductance that can be widely modulated within the same material even in deep nanoscale devices, tuning the thermal conductance within a single material system or nanostructure is extremely challenging and requires a large-scal