ﻻ يوجد ملخص باللغة العربية
The famous Rosette Nebula has an evacuated central cavity formed from the stellar winds ejected from the 2-6 million-year-old co-distant and co-moving central star cluster NGC 2244. However, with upper age estimates of less than 110,000 years, the central cavity is too young compared to NGC 2244 and existing models do not reproduce its properties. A new proper motion study herein using Gaia data reveals the ejection of the most massive star in the Rosette, HD46223, from NGC 2244 occurred 1.73 (+0.34,-0.25)Myr (1$sigma$ uncertainty) in the past. Assuming this ejection was at the birth of the most massive stars in NGC 2244, including the dominant centrally positioned HD46150, the age is set for the famous ionised region at more than ten times that derived for the cavity. Here, we are able to reproduce the structure of the Rosette Nebula, through simulation of mechanical stellar feedback from a 40M$_{odot}$ star in a thin sheet-like molecular cloud. We form the 135,000M$_{odot}$ cloud from thermally-unstable diffuse interstellar medium under the influence of a realistic background magnetic field with thermal/magnetic pressure equilibrium. Properties derived from a snapshot of the simulation at 1.5Myr, including cavity size, stellar age, magnetic field and resulting inclination to the line of sight, match those derived from observations. An elegant explanation is thus provided for the stark contrast in age estimates based on realistic diffuse ISM properties, molecular cloud formation and stellar wind feedback.
Stellar kinematics is a powerful tool for understanding the formation process of stellar associations. Here, we present a kinematic study of the young stellar population in the Rosette nebula using the recent Gaia data and high-resolution spectra. We
We have used the AMR hydrodynamic code, MG, to perform 3D magnetohydrodynamic simulations with self-gravity of stellar feedback in a sheet-like molecular cloud formed through the action of the thermal instability. We simulate the interaction of the m
Planck has mapped the polarized dust emission over the whole sky, making it possible to trace the Galactic magnetic field structure that pervades the interstellar medium (ISM). We combine polarization data from Planck with rotation measure (RM) obser
We have used the AMR hydrodynamic code, MG, to perform 3D hydrodynamic simulations with self-gravity of stellar feedback in a spherical clumpy molecular cloud formed through the action of thermal instability. We simulate the interaction of the mechan
We present new radio and optical images of the nearest radio galaxy Centaurus A and its host galaxy NGC 5128. We focus our investigation on the northern transition region, where energy is transported from the ~5 kpc (~5 arcmin) scales of the Northern