ﻻ يوجد ملخص باللغة العربية
We have used the AMR hydrodynamic code, MG, to perform 3D magnetohydrodynamic simulations with self-gravity of stellar feedback in a sheet-like molecular cloud formed through the action of the thermal instability. We simulate the interaction of the mechanical energy input from a 15 solar mass star and a 40 solar mass star into a 100 pc-diameter 17000 solar mass cloud with a corrugated sheet morphology that in projection appears filamentary. The stellar winds are introduced using appropriate Geneva stellar evolution models. In the 15 solar mass star case, the wind forms a narrow bipolar cavity with minimal effect on the parent cloud. In the 40 solar mass star case, the more powerful stellar wind creates a large cylindrical cavity through the centre of the cloud. After 12.5 Myrs and 4.97 Myrs respectively, the massive stars explode as supernovae (SNe). In the 15 solar mass star case, the SN material and energy is primarily deposited into the molecular cloud surroundings over ~10^5 years before the SN remnant escapes the cloud. In the 40 solar mass star case, a significant fraction of the SN material and energy rapidly escapes the molecular cloud along the wind cavity in a few tens of kiloyears. Both SN events compress the molecular cloud material around them to higher densities (so may trigger further star formation), and strengthen the magnetic field, typically by factors of 2-3 but up to a factor of 10. Our simulations are relevant to observations of bubbles in flattened ring-like molecular clouds and bipolar HII regions.
We have used the AMR hydrodynamic code, MG, to perform 3D hydrodynamic simulations with self-gravity of stellar feedback in a spherical clumpy molecular cloud formed through the action of thermal instability. We simulate the interaction of the mechan
We present a numerical study of the evolution of molecular clouds, from their formation by converging flows in the warm ISM, to their destruction by the ionizing feedback of the massive stars they form. We improve with respect to our previous simulat
We present Herschel SPIRE Fourier Transform Spectrometer (FTS) observations of N159W, an active star-forming region in the Large Magellanic Cloud (LMC). In our observations, a number of far-infrared cooling lines including CO(4-3) to CO(12-11), [CI]
We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much
With an aim of probing the physical conditions and excitation mechanisms of warm molecular gas in individual star-forming regions, we performed Herschel SPIRE FTS observations of 30 Doradus in the LMC. In our FTS observations, important FIR cooling l