ﻻ يوجد ملخص باللغة العربية
Wilson lines capture important features of scattering amplitudes, for example soft effects relevant for infrared divergences, and the Regge limit. Beyond the leading power approximation, corrections to the eikonal picture have to be taken into account. In this paper, we study such corrections in a model of massive scattering amplitudes in N = 4 super Yang-Mills, in the planar limit, where the mass is generated through a Higgs mechanism. Using known three-loop analytic expressions for the scattering amplitude, we find that the first power suppressed term has a very simple form, equal to a single power law. We propose that its exponent is governed by the anomalous dimension of a Wilson loop with a scalar inserted at the cusp, and we provide perturbative evidence for this proposal. We also analyze other limits of the amplitude and conjecture an exact formula for a total cross-section at high energies.
We show that the form of the recently proposed subleading soft graviton and gluon theorems in any dimension are severely constrained by elementary arguments based on Poincare and gauge invariance as well as a self-consistency condition arising from t
BPS Wilson loops in supersymmetric gauge theories have been the subjects of active research since they are often amenable to exact computation. So far most of the studies have focused on loops that do not intersect. In this paper, we derive exact res
We compute the three-loop four-gluon scattering amplitude in maximally supersymmetric Yang-Mills theory, including its full color dependence. Our result is the first complete computation of a non-planar four-particle scattering amplitude to three loo
The finite remainder function for planar, color-ordered, maximally helicity violating scattering processes in N=4 super Yang-Mills theory possesses a non-vanishing multi-Regge limit that depends on the choice of a Mandelstam region. We analyze the co
The structure constants of twist-two operators with spin $j$ in the BFKL limit $g^2rightarrow 0, jrightarrow 1$ but ${g^2over j-1}sim 1$ are determined from the calculation of the three-point correlator of twist-two light-ray operators in the triple