ﻻ يوجد ملخص باللغة العربية
We show that the form of the recently proposed subleading soft graviton and gluon theorems in any dimension are severely constrained by elementary arguments based on Poincare and gauge invariance as well as a self-consistency condition arising from the distributional nature of scattering amplitudes. Combined with the assumption of a local form as it would arise from a Ward identity the orbital part of the subleading operators is completely fixed by the leading universal Weinberg soft pole behavior. The polarization part of the differential subleading soft operators in turn is determined up to a single numerical factor for each hard leg at every order in the soft momentum expansion. In four dimensions, factorization of the Lorentz group allows to fix the subleading operators completely.
It is now well understood that Ward identities associated to the (extended) BMS algebra are equivalent to single soft graviton theorems. In this work, we show that if we consider nested Ward identities constructed out of two BMS charges, a class of d
Recently, Bern, Carrasco and Johansson conjectured dual identities inside the gluon tree scattering amplitudes. In this paper, we use the properties of the heterotic string and open string tree scattering amplitudes to refine and derive these dual id
Wilson lines capture important features of scattering amplitudes, for example soft effects relevant for infrared divergences, and the Regge limit. Beyond the leading power approximation, corrections to the eikonal picture have to be taken into accoun
Recently, new soft graviton theorem proposed by Cachazo and Strominger has inspired a lot of works. In this note, we use the KLT-formula to investigate the theorem. We have shown how the soft behavior of color ordered Yang-Mills amplitudes can be com
Recently it was conjectured that a certain infinite-dimensional diagonal subgroup of BMS supertranslations acting on past and future null infinity (${mathscr I}^-$ and ${mathscr I}^+$) is an exact symmetry of the quantum gravity ${cal S}$-matrix, and