ﻻ يوجد ملخص باللغة العربية
With the proposal of dual-wavelength pumping (DWP) scheme, DWP Er:ZBLAN fiber lasers at 3.5 um have become a fascinating area of research. However, limited by the absence of suitable saturable absorber, passively Q-switched and mode-locked fiber lasers have not been realized in this spectral region. Based on the layer-dependent bandgap and excellent photoelectric characteristics of black phosphorus (BP), BP is a promising candidate for saturable absorber near 3.5 um. Here, we fabricated a 3.5-um saturable absorber mirror (SAM) by transferring liquid-phase exfoliated BP flakes onto a gold-coated mirror. With the as-prepared BP SAM, we realized stable Q-switching and continuous-wave mode-locking operations in the DWP Er:ZBLAN fiber lasers at 3.5 um. To the best of our knowledge, it is the first time to achieve passively Q-switched and mode-locked pulses in 3.5 um spectral region. The research results will not only promote the development of 3.5-um pulsed fiber lasers but also open the photonic application of two-dimensional materials in this spectral region
Mid-infrared saturable absorber mirror is successfully fabricated by transferring the mechanically exfoliated black phosphorus onto the gold-coated mirror. With the as-prepared black phosphorus saturable absorber mirror, a continuous-wave passively m
Black phosphorus, a newly emerged two-dimensional material, has attracted wide attention as novel photonic material. Here, multi-layer black phosphorus is successfully fabricated by liquid phase exfoliation method. By employing black phosphorus as sa
We demonstrate 14.3-attosecond timing jitter [integrated from 10 kHz to 94 MHz offset frequency] optical pulse trains from 188-MHz repetition-rate mode-locked Yb-fiber lasers. In order to minimize the timing jitter, we shorten the non-gain fiber leng
We report results of numerical simulations on the multiple soliton generation and soliton energy quantization in a soliton fiber ring laser passively mode-locked by using the nonlinear polarization rotation technique. We found numerically that the fo
We demonstrate ultra-low timing jitter optical pulse trains from free- running, 80 MHz repetition rate, mode-locked Yb-fiber lasers. Timing jitter of various mode-locking conditions at close-to-zero intra-cavity dispersion (-0.004 to +0.002 ps2 range