ترغب بنشر مسار تعليمي؟ اضغط هنا

Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime

373   0   0.0 ( 0 )
 نشر من قبل Jungwon Kim
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate ultra-low timing jitter optical pulse trains from free- running, 80 MHz repetition rate, mode-locked Yb-fiber lasers. Timing jitter of various mode-locking conditions at close-to-zero intra-cavity dispersion (-0.004 to +0.002 ps2 range at 1040 nm center wavelength) is characterized using a sub-20-attosecond-resolution balanced optical cross-correlation method. The measured lowest rms timing jitter is 175 attoseconds when integrated from 10 kHz to 40 MHz (Nyquist frequency) offset frequency range, which corresponds to the record-low timing jitter from free-running mode-locked fiber lasers so far. We also experimentally found the mode-locking conditions of fiber lasers where both ultra-low timing jitter and relative intensity noise can be achieved.



قيم البحث

اقرأ أيضاً

We demonstrate 14.3-attosecond timing jitter [integrated from 10 kHz to 94 MHz offset frequency] optical pulse trains from 188-MHz repetition-rate mode-locked Yb-fiber lasers. In order to minimize the timing jitter, we shorten the non-gain fiber leng th to shorten the pulsewidth and reduce excessive higher-order nonlinearity and nonlinear chirp in the fiber laser. The measured jitter spectrum is limited by the amplified spontaneous emission limited quantum noise in the 100 kHz - 1 MHz offset frequency range, while it was limited by the relative intensity noise-converted jitter in the lower offset frequency range. This intrinsically low timing jitter enables sub-100-attosecond synchronization between the two mode-locked Yb-fiber lasers over the full Nyquist frequency with a modest 10-kHz locking bandwidth. The demonstrated performance is the lowest timing jitter measured from any free-running mode-locked fiber lasers, comparable to the performance of the lowest-jitter Ti:sapphire solid-state lasers.
We study the effect of noise on the dynamics of passively mode-locked semiconductor lasers both experimentally and theoretically. A method combining analytical and numerical approaches for estimation of pulse timing jitter is proposed. We investigate how the presence of dynamical features such as wavelength bistability affects timing jitter.
We demonstrate sub-100-attosecond timing jitter optical pulse trains generated from free-running, 77.6-MHz repetition-rate, mode-locked Er-fiber lasers. At -0.002(pm0.001) ps2 net cavity dispersion, the rms timing jitter is 70 as (224 as) integrated from 10 kHz (1 kHz) to 38.8 MHz offset frequency, when measured by a 24-as-resolution balanced optical cross-correlator. To our knowledge, this result corresponds to the lowest rms timing jitter measured from any mode-locked fiber lasers so far. The measured result also agrees fairly well with the Namiki-Haus analytic model of quantum-limited timing jitter in stretched-pulse fiber lasers.
270 - Guoqing Pu , Lilin Yi , Li Zhang 2019
Mode-locked lasers exhibit complex nonlinear dynamics. Precise observation of these dynamics will aid in understanding of the underlying physics and provide new insights for laser design and applications. The starting dynamics, from initial noise flu ctuations to the mode-locking regime, have previously been observed directly by time-stretched transform-based real-time spectroscopy. However, the regime transition dynamics, which are essential processes in mode-locked lasers, have not yet been resolved because regime transition process tracking is very challenging. Here we demonstrate the first insight into the regime transition dynamics enabled by our design of a real-time programmable mode-locked fibre laser, in which different operating regimes can be achieved and switched automatically. The regime transition dynamics among initial noise fluctuations, Q-switching, fundamental mode-locking and harmonic mode-locking regimes have been observed and thoroughly analysed by both temporal and spectral means. These findings will enrich our understanding of the complex dynamics inside mode-locked lasers.
209 - Kwangyun Jung , Jungwon Kim 2014
We demonstrate a method that enables accurate timing jitter spectral density characterization of free-running mode-locked laser oscillators over more than 10-decade of Fourier frequency from mHz to tens MHz range. The method is based on analyzing bot h the input voltage noise to the slave laser and the output voltage noise from the balanced optical cross- correlator (BOC), when two mode-locked lasers are synchronized in repetition rate by the BOC. As a demonstration experiment, timing jitter spectrum of a free-running mode-locked Er-fiber laser with a dynamic range of >340 dB is measured over Fourier frequency ranging from 1 mHz to 38.5 MHz (Nyquist frequency). The demonstrated method can resolve different noise mechanisms that cause specific jitter characteristics in free-running mode-locked laser oscillators for a vast range of time scales from <100-ns to >1000-s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا