ﻻ يوجد ملخص باللغة العربية
The spin of an electron in a self-assembled InAs/GaAs quantum dot molecule is optically prepared and measured through the trion triplet states. A longitudinal magnetic field is used to tune two of the trion states into resonance, forming a superposition state through asymmetric spin exchange. As a result, spin-flip Raman transitions can be used for optical spin initialization, while separate trion states enable cycling transitions for non-destructive measurement. With two-laser transmission spectroscopy we demonstrate both operations simultaneously, something not previously accomplished in a single quantum dot.
Waveguide-based spin-photon interfaces on the GaAs platform have emerged as a promising system for a variety of quantum information applications directly integrated into planar photonic circuits. The coherent control of spin states in a quantum dot c
We propose a scheme to efficiently couple a single quantum dot electron spin to an optical nano-cavity, which enables us to simultaneously benefit from a cavity as an efficient photonic interface, as well as to perform high fidelity (nearly 100%) spi
We present a scheme for efficient state teleportation and entanglement swapping using a single quantum-dot spin in an optical microcavity based on giant circular birefringence. State teleportation or entanglement swapping is heralded by the sequentia
The success of the emerging field of solid-state optical quantum information processing (QIP) critically depends on the access to resonant optical materials. Rare-earth ions (REIs) are suitable candidates for QIP protocols due to their extraordinary
Quantum error correction is of crucial importance for fault-tolerant quantum computers. As an essential step towards the implementation of quantum error-correcting codes, quantum non-demolition (QND) measurements are needed to efficiently detect the