ترغب بنشر مسار تعليمي؟ اضغط هنا

Circuit approach to photonic heat transport

136   0   0.0 ( 0 )
 نشر من قبل H. Courtois
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the heat transfer by photons between two metals coupled by a linear element with a reactive impedance. Using a simple circuit approach, we calculate the spectral power transmitted from one resistor to the other and find that it is determined by the photon transmission coefficient, which depends on the impedances of the metals and the coupling element. We study the total photonic power flow for different coupling impedances, both in the linear regime, where the temperature difference between the metals is small, and in the non-linear regime of large temperature differences.



قيم البحث

اقرأ أيضاً

We present a theoretical study of a superconducting charge qubit dispersively coupled to a transmission line resonator. Starting from a master equation description of this coupled system and using a polaron transformation, we obtain an exact effectiv e master equation for the qubit. We then use quantum trajectory theory to investigate the measurement of the qubit by continuous homodyne measurement of the resonator out-field. Using the same porlaron transformation, a stochastic master equation for the conditional state of the qubit is obtained. From this result, various definitions of the measurement time are studied. Furthermore, we find that in the limit of strong homodyne measurement, typical quantum trajectories for the qubit exhibit a crossover from diffusive to jump-like behavior. Finally, in the presence of Rabi drive on the qubit, the qubit dynamics is shown to exhibit quantum Zeno behavior.
Heat is detrimental for the operation of quantum systems, yet it fundamentally behaves according to quantum mechanics, being phase coherent and universally quantum-limited regardless of its carriers. Due to their robustness, superconducting circuits integrating dissipative elements are ideal candidates to emulate many-body phenomena in quantum heat transport, hitherto scarcely explored experimentally. However, their ability to tackle the underlying full physical richness is severely hindered by the exclusive use of a magnetic flux as a control parameter and requires complementary approaches. Here, we introduce a dual, magnetic field-free circuit where charge quantization in a superconducting island enables thorough electric field control. We thus tune the thermal conductance, close to its quantum limit, of a single photonic channel between two mesoscopic reservoirs. We observe heat flow oscillations originating from the competition between Cooper-pair tunnelling and Coulomb repulsion in the island, well captured by a simple model. Our results demonstrate that the duality between charge and flux extends to heat transport, with promising applications in thermal management of quantum devices.
Quantum thermodynamics is emerging both as a topic of fundamental research and as means to understand and potentially improve the performance of quantum devices. A prominent platform for achieving the necessary manipulation of quantum states is super conducting circuit quantum electrodynamics (QED). In this platform, thermalization of a quantum system can be achieved by interfacing the circuit QED subsystem with a thermal reservoir of appropriate Hilbert dimensionality. Here we study heat transport through an assembly consisting of a superconducting qubit capacitively coupled between two nominally identical coplanar waveguide resonators, each equipped with a heat reservoir in the form of a normal-metal mesoscopic resistor termination. We report the observation of tunable photonic heat transport through the resonator-qubit-resonator assembly, showing that the reservoir-to-reservoir heat flux depends on the interplay between the qubit-resonator and the resonator-reservoir couplings, yielding qualitatively dissimilar results in different coupling regimes. Our quantum heat valve is relevant for the realisation of quantum heat engines and refrigerators, that can be obtained, for example, by exploiting the time-domain dynamics and coherence of driven superconducting qubits. This effort would ultimately bridge the gap between the fields of quantum information and thermodynamics of mesoscopic systems.
Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect [1], which manifests itself both in charge [2] and energy transport [3-5]. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics [4-6], and is expected to be a key tool in a number of nanoscience fields, including solid state cooling [7], thermal isolation [8, 9], radiation detection [7], quantum information [10, 11] and thermal logic [12]. Here we show the realization of the first balanced Josephson heat modulator [13] designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase-engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters [14], heat pumps [15] and time-dependent electronic engines [16-19].
The quantum behaviour of mechanical resonators is a new and emerging field driven by recent experiments reaching the quantum ground state. The high frequency, small mass, and large quality-factor of carbon nanotube resonators make them attractive for quantum nanomechanical applications. A common element in experiments achieving the resonator ground state is a second quantum system, such as coherent photons or superconducting device, coupled to the resonators motion. For nanotubes, however, this is a challenge due to their small size. Here, we couple a carbon nanoelectromechanical (NEMS) device to a superconducting circuit. Suspended carbon nanotubes act as both superconducting junctions and moving elements in a Superconducting Quantum Interference Device (SQUID). We observe a strong modulation of the flux through the SQUID from displacements of the nanotube. Incorporating this SQUID into superconducting resonators and qubits should enable the detection and manipulation of nanotube mechanical quantum states at the single-phonon level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا