ترغب بنشر مسار تعليمي؟ اضغط هنا

An ALMA view of star formation efficiency suppression in early-type galaxies after gas-rich minor mergers

312   0   0.0 ( 0 )
 نشر من قبل Freeke van de Voort
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gas-rich minor mergers contribute significantly to the gas reservoir of early-type galaxies (ETGs) at low redshift, yet the star formation efficiency (SFE; the star formation rate divided by the molecular gas mass) appears to be strongly suppressed following some of these events, in contrast to the more well-known merger-driven starbursts. We present observations with the Atacama Large Millimeter/submillimeter Array (ALMA) of six ETGs, which have each recently undergone a gas-rich minor merger, as evidenced by their disturbed stellar morphologies. These galaxies were selected because they exhibit extremely low SFEs. We use the resolving power of ALMA to study the morphology and kinematics of the molecular gas. The majority of our galaxies exhibit spatial and kinematical irregularities, such as detached gas clouds, warps, and other asymmetries. These asymmetries support the interpretation that the suppression of the SFE is caused by dynamical effects stabilizing the gas against gravitational collapse. Through kinematic modelling we derive high velocity dispersions and Toomre Q stability parameters for the gas, but caution that such measurements in edge-on galaxies suffer from degeneracies. We estimate merger ages to be about 100~Myr based on the observed disturbances in the gas distribution. Furthermore, we determine that these galaxies lie, on average, two orders of magnitude below the Kennicutt-Schmidt relation for star-forming galaxies as well as below the relation for relaxed ETGs. We discuss potential dynamical processes responsible for this strong suppression of star formation surface density at fixed molecular gas surface density.



قيم البحث

اقرأ أيضاً

Observations of the $gamma$-ray emission around star clusters, isolated supernova remnants, and pulsar wind nebulae indicate that the cosmic-ray (CR) diffusion coefficient near acceleration sites can be suppressed by a large factor compared to the Ga laxy average. We explore the effects of such local suppression of CR diffusion on galaxy evolution using simulations of isolated disk galaxies with regular and high gas fractions. Our results show that while CR propagation with constant diffusivity can make gaseous disks more stable by increasing the midplane pressure, large-scale CR pressure gradients cannot prevent local fragmentation when the disk is unstable. In contrast, when CR diffusivity is suppressed in star-forming regions, the accumulation of CRs in these regions results in strong local pressure gradients that prevent the formation of massive gaseous clumps. As a result, the distribution of dense gas and star formation changes qualitatively: a globally unstable gaseous disk does not violently fragment into massive star-forming clumps but maintains a regular grand-design spiral structure. This effect regulates star formation and disk structure and is qualitatively different from and complementary to the global role of CRs in vertical hydrostatic support of the gaseous disk and in driving galactic winds.
275 - L. M. Young 2008
Many early-type galaxies are detected at 24 to 160 micron but the emission is usually dominated by an AGN or heating from the evolved stellar population. Here we present MIPS observations of a sample of elliptical and lenticular galaxies which are ri ch in cold molecular gas, and we investigate how much of the MIR to FIR emission could be due to star formation activity. The 24 micron images show a rich variety of structures, including nuclear point sources, rings, disks, and smooth extended emission, and comparisons to matched-resolution CO and radio continuum images suggest that the bulk of the 24 micron emission can be traced to star formation. The star formation efficiencies are comparable to those found in normal spirals. Some future directions for progress are also mentioned.
The molecular gas content of local early-type galaxies is constrained and discussed in relation to their evolution. First, as part of the Atlas3D survey, we present the first complete, large (260 objects), volume-limited single-dish survey of CO in n ormal local early-type galaxies. We find a surprisingly high detection rate of 22%, independent of luminosity and at best weakly dependent on environment. Second, the extent of the molecular gas is constrained with CO synthesis imaging, and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of the systems, although this behaviour is drastically diffferent between field and cluster environments. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Last, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation, following the standard Schmidt-Kennicutt law but not the far infrared-radio correlation. This may suggest a greater diversity in star formation processes than observed in disk galaxies. Using multiple molecular tracers, we are thus starting to probe the physical conditions of the cold gas in early-types.
Unresolved gas and dust observations show a surprising diversity in the amount of interstellar matter in early-type galaxies. Using ALMA observations we resolve the ISM in z$sim$0.05 early-type galaxies. From a large sample of early-type galaxies det ected in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) we selected five of the dustiest cases, with dust masses M$_dsim$several$times10^7$M$_odot$, with the aim of mapping their submillimetre continuum and $^{12}$CO(2-1) line emission distributions. These observations reveal molecular gas disks. There is a lack of associated, extended continuum emission in these ALMA observations, most likely because it is resolved out or surface brightness limited, if the dust distribution is as extended as the CO gas. However, two galaxies have central continuum ALMA detections. An additional, slightly offset, continuum source is revealed in one case, which may have contributed to confusion in the Herschel fluxes. Serendipitous continuum detections further away in the ALMA field are found in another case. Large and massive rotating molecular gas disks are mapped in three of our targets, reaching a few$times10^{9}$M$_odot$. One of these shows evidence of kinematic deviations from a pure rotating disc. The fields of our two remaining targets contain only smaller, weak CO sources, slightly offset from the optical galaxy centres. These may be companion galaxies seen in ALMA observations, or background objects. These heterogeneous findings in a small sample of dusty early-type galaxies reveal the need for more such high spatial resolution studies, to understand statistically how dust and gas are related in early-type galaxies.
145 - F. S. Liu , Shude Mao (2 2012
We identify a total of 120 early-type Brightest Cluster Galaxies (BCGs) at 0.1<z<0.4 in two recent large cluster catalogues selected from the Sloan Digital Sky Survey (SDSS). They are selected with strong emission lines in their optical spectra, with both H{alpha} and [O II]{lambda}3727 line emission, which indicates significant ongoing star formation. They constitute about ~ 0.5% of the largest, optically-selected, low-redshift BCG sample, and the fraction is a strong function of cluster richness. Their star formation history can be well described by a recent minor and short starburst superimposed on an old stellar component, with the recent episode of star formation contributing on average only less than 1 percent of the total stellar mass. We show that the more massive star-forming BCGs in richer clusters tend to have higher star formation rate (SFR) and specific SFR (SFR per unit galaxy stellar mass). We also compare their statistical properties with a control sample selected from X-ray luminous clusters, and show that the fraction of star-forming BCGs in X-ray luminous clusters is almost one order of magnitude larger than that in optically-selected clusters. BCGs with star formation in cooling flow clusters usually have very flat optical spectra and show the most active star formation, which may be connected with cooling flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا