ﻻ يوجد ملخص باللغة العربية
The molecular gas content of local early-type galaxies is constrained and discussed in relation to their evolution. First, as part of the Atlas3D survey, we present the first complete, large (260 objects), volume-limited single-dish survey of CO in normal local early-type galaxies. We find a surprisingly high detection rate of 22%, independent of luminosity and at best weakly dependent on environment. Second, the extent of the molecular gas is constrained with CO synthesis imaging, and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of the systems, although this behaviour is drastically diffferent between field and cluster environments. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Last, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation, following the standard Schmidt-Kennicutt law but not the far infrared-radio correlation. This may suggest a greater diversity in star formation processes than observed in disk galaxies. Using multiple molecular tracers, we are thus starting to probe the physical conditions of the cold gas in early-types.
We have carried out a survey for 12CO J=1-0 and J=2-1 emission in the 260 early-type galaxies of the volume-limited Atlas3D sample, with the goal of connecting their star formation and assembly histories to their cold gas content. This is the largest
We use the IRAM HERACLES survey to study CO emission from 33 nearby spiral galaxies down to very low intensities. Using atomic hydrogen (HI) data, mostly from THINGS, we predict the local mean CO velocity from the mean HI velocity. By renormalizing t
High resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of HI, H2 and star formation rate (Sigma_HI, Sigma_H2, Sigma_SFR) relate on scales of a few hundred parsecs. At these
[Abridged] We present a detailed study of the physical properties of the molecular gas in a sample of 18 molecular gas-rich early-type galaxies (ETGs) from the ATLAS$ 3D sample. Our goal is to better understand the star formation processes occurring
We combine SAURON integral field data of a representative sample of local early-type, red sequence galaxies with Spitzer/IRAC imaging in order to investigate the presence of trace star formation in these systems. With the Spitzer data, we identify ga