ﻻ يوجد ملخص باللغة العربية
We show how to approximately represent a quantum state using the square root of the usual amount of classical memory. The classical representation of an $n$-qubit state $psi$ consists of its inner products with $O(sqrt{2^n})$ stabilizer states. A quantum state initially specified by its $2^n$ entries in the computational basis can be compressed to this form in time $O(2^n mathrm{poly}(n))$, and, subsequently, the compressed description can be used to additively approximate the expectation value of an arbitrary observable. Our compression scheme directly gives a new protocol for the vector in subspace problem with randomized one-way communication complexity that matches (up to polylogarithmic factors) the optimal upper bound, due to Raz. We obtain an exponential improvement over Razs protocol in terms of computational efficiency.
We present a classical interactive protocol that verifies the validity of a quantum witness state for the local Hamiltonian problem. It follows from this protocol that approximating the non-local value of a multi-player one-round game to inverse poly
We construct a quantum oracle relative to which $mathsf{BQP} = mathsf{QMA}$ but cryptographic pseudorandom quantum states and pseudorandom unitary transformations exist, a counterintuitive result in light of the fact that pseudorandom states can be b
We consider the task of estimating the expectation value of an $n$-qubit tensor product observable $O_1otimes O_2otimes cdots otimes O_n$ in the output state of a shallow quantum circuit. This task is a cornerstone of variational quantum algorithms f
A locking protocol between two parties is as follows: Alice gives an encrypted classical message to Bob which she does not want Bob to be able to read until she gives him the key. If Alice is using classical resources, and she wants to approach uncon
We give a pedagogical introduction of the stochastic variational method and show that this generalized variational principle describes classical and quantum mechanics in a unified way.