ﻻ يوجد ملخص باللغة العربية
We study functional and spectral properties of perturbations of the magnetic Laplace operator on the circle. This operator appears when considering the restriction to the unit circle of a two-dimensional Schr{o}dinger operator with the Bohm-Aharonov vector potential. We prove a Hardy-type inequality on the two-dimensional Euclidean space and, on the circle, a sharp interpolation inequality and a sharp Keller-Lieb-Thirring inequality.
New finite energy traveling wave solutions with small speed are constructed for the three dimensional Gross-Pitaevskii equation begin{equation*} iPsi_t= Delta Psi+(1-|Psi|^2)Psi, end{equation*} where $Psi$ is a complex valued function defined on
This paper presents some results concerning the size of magnetic fields that support zero modes for the three dimensional Dirac equation and related problems for spinor equations. It is a well known fact that for the Schrodinger in three dimensions t
We are concerned with the inverse problem of identifying magnetic anomalies with varing parameters beneath the Earth using geomagnetic monitoring. Observations of the change in Earths magnetic field--the secular variation--provide information about t
The aim of this paper is to study, in dimensions 2 and 3, the pure-power non-linear Schrodinger equation with an external uniform magnetic field included. In particular, we derive a general criteria on the initial data and the power of the non-linear
In this work we study Dirac operators on two-dimensional domains coupled to a magnetic field perpendicular to the plane. We focus on the infinite-mass boundary condition (also called MIT bag condition). In the case of bounded domains, we establish th