ﻻ يوجد ملخص باللغة العربية
The aim of this paper is to study, in dimensions 2 and 3, the pure-power non-linear Schrodinger equation with an external uniform magnetic field included. In particular, we derive a general criteria on the initial data and the power of the non-linearity so that the corresponding solution blows up in finite time, and we show that the time for blow up to occur decreases as the strength of the magnetic field increases. In addition, we also discuss some observations about Strichartz estimates in 2 dimensions for the Mehler kernel, as well as similar blow-up results for the non-linear Pauli equation.
We consider propagation of optical pulses under the interplay of dispersion and Kerr non-linearity in optical fibres with impurities distributed at random uniformly on the fibre. By using a model based on the non-linear Schrodinger equation we clarif
We study the existence and stability of the standing waves for the periodic cubic nonlinear Schrodinger equation with a point defect determined by a periodic Dirac distribution at the origin. This equation admits a smooth curve of positive periodic s
We consider the propagation of wave packets for the nonlinear Schrodinger equation, in the semi-classical limit. We establish the existence of a critical size for the initial data, in terms of the Planck constant: if the initial data are too small, t
In this paper, we search the dependence of some statistical quantities such as the free energy, the mean energy, the entropy, and the specific heat for the Schrodinger equation on the temperature, particularly the case of a non-central potential. The
We consider the discrete spectrum of the two-dimensional Hamiltonian $H=H_0+V$, where $H_0$ is a Schrodinger operator with a non-constant magnetic field $B$ that depends only on one of the spatial variables, and $V$ is an electric potential that deca