ترغب بنشر مسار تعليمي؟ اضغط هنا

DCASE 2017 Task 1: Acoustic Scene Classification Using Shift-Invariant Kernels and Random Features

84   0   0.0 ( 0 )
 نشر من قبل Benjamin Elizalde
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Acoustic scene recordings are represented by different types of handcrafted or Neural Network-derived features. These features, typically of thousands of dimensions, are classified in state of the art approaches using kernel machines, such as the Support Vector Machines (SVM). However, the complexity of training these methods increases with the dimensionality of these input features and the size of the dataset. A solution is to map the input features to a randomized lower-dimensional feature space. The resulting random features can approximate non-linear kernels with faster linear kernel computation. In this work, we computed a set of 6,553 input features and used them to compute random features to approximate three types of kernels, Gaussian, Laplacian and Cauchy. We compared their performance using an SVM in the context of the DCASE Task 1 - Acoustic Scene Classification. Experiments show that both, input and random features outperformed the DCASE baseline by an absolute 4%. Moreover, the random features reduced the dimensionality of the input by more than three times with minimal loss of performance and by more than six times and still outperformed the baseline. Hence, random features could be employed by state of the art approaches to compute low-storage features and perform faster kernel computations.



قيم البحث

اقرأ أيضاً

This paper describes an acoustic scene classification method which achieved the 4th ranking result in the IEEE AASP challenge of Detection and Classification of Acoustic Scenes and Events 2016. In order to accomplish the ensuing task, several methods are explored in three aspects: feature extraction, feature transformation, and score fusion for final decision. In the part of feature extraction, several features are investigated for effective acoustic scene classification. For resolving the issue that the same sound can be heard in different places, a feature transformation is applied for better separation for classification. From these, several systems based on different feature sets are devised for classification. The final result is determined by fusing the individual systems. The method is demonstrated and validated by the experiment conducted using the Challenge database.
137 - Seongkyu Mun , Suwon Shon 2018
In a recent acoustic scene classification (ASC) research field, training and test device channel mismatch have become an issue for the real world implementation. To address the issue, this paper proposes a channel domain conversion using factorized h ierarchical variational autoencoder. Proposed method adapts both the source and target domain to a pre-defined specific domain. Unlike the conventional approach, the relationship between the target and source domain and information of each domain are not required in the adaptation process. Based on the experimental results using the IEEE detection and classification of acoustic scenes and event 2018 task 1-B dataset and the baseline system, it is shown that the proposed approach can mitigate the channel mismatching issue of different recording devices.
88 - Liwen Zhang , Jiqing Han 2019
The performance of an Acoustic Scene Classification (ASC) system is highly depending on the latent temporal dynamics of the audio signal. In this paper, we proposed a multiple layers temporal pooling method using CNN feature sequence as in-put, which can effectively capture the temporal dynamics for an entire audio signal with arbitrary duration by building direct connections between the sequence and its time indexes. We applied our novel framework on DCASE 2018 task 1, ASC. For evaluation, we trained a Support Vector Machine (SVM) with the proposed Multi-Layered Temporal Pooling (MLTP) learned features. Experimental results on the development dataset, usage of the MLTP features significantly improved the ASC performance. The best performance with 75.28% accuracy was achieved by using the optimal setting found in our experiments.
Convolutional neural networks (CNNs) with log-mel spectrum features have shown promising results for acoustic scene classification tasks. However, the performance of these CNN based classifiers is still lacking as they do not generalise well for unkn own environments. To address this issue, we introduce an acoustic spectrum transformation network where traditional log-mel spectrums are transformed into imagined visual features (IVF). The imagined visual features are learned by exploiting the relationship between audio and visual features present in video recordings. An auto-encoder is used to encode images as visual features and a transformation network learns how to generate imagined visual features from log-mel. Our model is trained on a large dataset of Youtube videos. We test our proposed method on the scene classification task of DCASE and ESC-50, where our method outperforms other spectrum features, especially for unseen environments.
165 - Lam Pham 2021
This thesis focuses on dealing with the task of acoustic scene classification (ASC), and then applied the techniques developed for ASC to a real-life application of detecting respiratory disease. To deal with ASC challenges, this thesis addresses thr ee main factors that directly affect the performance of an ASC system. Firstly, this thesis explores input features by making use of multiple spectrograms (log-mel, Gamma, and CQT) for low-level feature extraction to tackle the issue of insufficiently discriminative or descriptive input features. Next, a novel Encoder network architecture is introduced. The Encoder firstly transforms each low-level spectrogram into high-level intermediate features, or embeddings, and thus combines these high-level features to form a very distinct composite feature. The composite or combined feature is then explored in terms of classification performance, with different Decoders such as Random Forest (RF), Multilayer Perception (MLP), and Mixture of Experts (MoE). By using this Encoder-Decoder framework, it helps to reduce the computation cost of the reference process in ASC systems which make use of multiple spectrogram inputs. Since the proposed techniques applied for general ASC tasks were shown to be highly effective, this inspired an application to a specific real-life application. This was namely the 2017 Internal Conference on Biomedical Health Informatics (ICBHI) respiratory sound dataset. Building upon the proposed ASC framework, the ICBHI tasks were tackled with a deep learning framework, and the resulting system shown to be capable at detecting respiratory anomaly cycles and diseases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا