ﻻ يوجد ملخص باللغة العربية
The performance of an Acoustic Scene Classification (ASC) system is highly depending on the latent temporal dynamics of the audio signal. In this paper, we proposed a multiple layers temporal pooling method using CNN feature sequence as in-put, which can effectively capture the temporal dynamics for an entire audio signal with arbitrary duration by building direct connections between the sequence and its time indexes. We applied our novel framework on DCASE 2018 task 1, ASC. For evaluation, we trained a Support Vector Machine (SVM) with the proposed Multi-Layered Temporal Pooling (MLTP) learned features. Experimental results on the development dataset, usage of the MLTP features significantly improved the ASC performance. The best performance with 75.28% accuracy was achieved by using the optimal setting found in our experiments.
Convolutional neural networks (CNNs) with log-mel spectrum features have shown promising results for acoustic scene classification tasks. However, the performance of these CNN based classifiers is still lacking as they do not generalise well for unkn
This paper presents a Depthwise Disout Convolutional Neural Network (DD-CNN) for the detection and classification of urban acoustic scenes. Specifically, we use log-mel as feature representations of acoustic signals for the inputs of our network. In
In a recent acoustic scene classification (ASC) research field, training and test device channel mismatch have become an issue for the real world implementation. To address the issue, this paper proposes a channel domain conversion using factorized h
This paper describes an acoustic scene classification method which achieved the 4th ranking result in the IEEE AASP challenge of Detection and Classification of Acoustic Scenes and Events 2016. In order to accomplish the ensuing task, several methods
Acoustic Echo Cancellation (AEC) plays a key role in speech interaction by suppressing the echo received at microphone introduced by acoustic reverberations from loudspeakers. Since the performance of linear adaptive filter (AF) would degrade severel