ﻻ يوجد ملخص باللغة العربية
The wave equation generalizing the Dirac operator to the Z3-graded case is introduced, whose diagonalization leads to a sixth-order equation. It intertwines not only quark and anti-quark state as well as the u and d quarks, but also the three colors, and is therefore invariant under the product group Z2 x Z2 x Z3. The solutions of this equation cannot propagate because their exponents always contain non-oscillating real damping factor. We show how certain cubic products can propagate nevertheless. The model suggests the origin of the color SU(3) symmetry and of the SU(2) x U(1) that arise automatically in this model, leading to the full bosonic gauge sector of the Standard Model.
We show how the discrete symmetries $Z_2$ and $Z_3$ combined with the superposition principle result in the $SL(2, {bf C})$-symmetry of quantum states. The role of Paulis exclusion principle in the derivation of the SL(2, C) symmetry is put forward a
We discuss the structure of the Dirac equation and how the nilpotent and the Majorana operators arise naturally in this context. This provides a link between Kauffmans work on discrete physics, iterants and Majorana Fermions and the work on nilpotent
A Z3 symmetric generalization of the Dirac equation was proposed in recent series of papers, where its properties and solutions discussed. The generalized Dirac operator acts on coloured spinors composed out of six Pauli spinors, describing three col
To simulate a quantum system with continuous degrees of freedom on a quantum computer based on quantum digits, it is necessary to reduce continuous observables (primarily coordinates and momenta) to discrete observables. We consider this problem base
We construct ternary self-distributive (TSD) objects from compositions of binary Lie algebras, $3$-Lie algebras and, in particular, ternary Nambu-Lie algebras. We show that the structures obtained satisfy an invertibility property resembling that of