ﻻ يوجد ملخص باللغة العربية
We discuss the structure of the Dirac equation and how the nilpotent and the Majorana operators arise naturally in this context. This provides a link between Kauffmans work on discrete physics, iterants and Majorana Fermions and the work on nilpotent structures and the Dirac equation of Peter Rowlands. We give an expression in split quaternions for the Majorana Dirac equation in one dimension of time and three dimensions of space. Majorana discovered a version of the Dirac equation that can be expressed entirely over the real numbers. This led him to speculate that the solutions to his version of the Dirac equation would correspond to particles that are their own anti-particles. It is the purpose of this paper to examine the structure of this Majorana-Dirac Equation, and to find basic solutions to it by using the nilpotent technique. We succeed in this aim and describe our results.
The wave equation generalizing the Dirac operator to the Z3-graded case is introduced, whose diagonalization leads to a sixth-order equation. It intertwines not only quark and anti-quark state as well as the u and d quarks, but also the three colors,
By constructing the commutative operators chain, we derive the integrable conditions for solving the eigenfunctions of Dirac equation and Schrodinger equation. These commutative relations correspond to the intrinsic symmetry of the physical system, w
We examine a new class of CPT-even and dimension-five nonminimal interactions between fermions and photons, deprived of higher-order derivatives, yielding electric dipole moment and magnetic dipole moment in the context of the Dirac equation. These c
We study the 7x7 Hagen-Hurley equations describing spin 1 particles. We split these equations, in the interacting case, into two Dirac equations with non-standard solutions. It is argued that these solutions describe decay of a virtual W boson in beta decay.
In this paper, we provide a procedure to solve the eigen solutions of Dirac equation with complicated potential approximately. At first, we solve the eigen solutions of a linear Dirac equation with complete eigen system, which approximately equals to