ﻻ يوجد ملخص باللغة العربية
We develop a novel real-time approach to computing the entanglement between spatial regions for Gaussian states in quantum field theory. The entanglement entropy is characterized in terms of local correlation functions on space-like Cauchy hypersurfaces. The framework is applied to explore an expanding light cone geometry in the particular case of the Schwinger model for quantum electrodynamics in 1+1 space-time dimensions. We observe that the entanglement entropy becomes extensive in rapidity at early times and that the corresponding local reduced density matrix is a thermal density matrix for excitations around a coherent field with a time dependent temperature. Since the Schwinger model successfully describes many features of multiparticle production in $e^+ e^-$ collisions, our results provide an attractive explanation in this framework for the apparent thermal nature of multiparticle production even in the absence of significant final state scattering.
A surprising result in $e^+ e^-$ collisions is that the particle spectra from the string formed between the expanding quark-antiquark pair have thermal properties even though scatterings appear not to be frequent enough to explain this. We address th
We evaluate self-interaction effects on the quantum correlations of field modes of opposite momenta for scalar $lambda phi^4$ theory in a two-dimensional asymptotically flat Robertson-Walker spacetime. Such correlations are encoded both in the von-Ne
We study the evolution of the two scalar fields entangled via a mutual interaction in an expanding spacetime. We compute the logarithmic negativity to leading order in perturbation theory and show that for lowest order in the coupling constants, the
We consider entanglement entropy between two halves of space separated by a plane, in the theory of free photon in 3+1 dimensions. We show how to separate local gauge invariant quantities that belong to the two spatial regions. We calculate the entan
We investigate the quantum radiation produced by an Unruh-De Witt detector in a uniformly accelerating motion coupled to the vacuum fluctuations. Quantum radiation is nonvanishing, which is consistent with the previous calculation by Lin and Hu [Phys