ﻻ يوجد ملخص باللغة العربية
A surprising result in $e^+ e^-$ collisions is that the particle spectra from the string formed between the expanding quark-antiquark pair have thermal properties even though scatterings appear not to be frequent enough to explain this. We address this problem by considering the finite observable interval of a relativistic quantum string in terms of its reduced density operator by tracing over the complement region. We show how quantum entanglement in the presence of a horizon in spacetime for the causal transfer of information leads locally to a reduced mixed-state density operator. For very early proper time $tau$, we show that the entanglement entropy becomes extensive and scales with the rapidity. At these early times, the reduced density operator is of thermal form, with an entanglement temperature $T_tau=hbar/(2pi k_B tau)$, even in the absence of any scatterings.
We develop a novel real-time approach to computing the entanglement between spatial regions for Gaussian states in quantum field theory. The entanglement entropy is characterized in terms of local correlation functions on space-like Cauchy hypersurfa
We investigate the stability of the pion string in a thermal bath and a dense medium. We find that stability is dependent on the order of the chiral transition. String core stability within the experimentally allowed regime is found only if the chira
We study the evolution of the two scalar fields entangled via a mutual interaction in an expanding spacetime. We compute the logarithmic negativity to leading order in perturbation theory and show that for lowest order in the coupling constants, the
We study stabilization of an unstable cosmic string associated with spontaneously broken $U(1)_R$ symmetry, which otherwise causes a dangerous roll-over process. We demonstrate that in a gauge mediation model, messengers can receive enough correction
The origin of the low-lying nature of the $N$*(1440), or Roper resonance, has been the subject of significant interest for many years, including several investigations using lattice QCD. The majority of lattice studies have not observed a low-lying e