ﻻ يوجد ملخص باللغة العربية
Understanding the fundamental dynamics of topological vortex and antivortex naturally formed in micro/nanoscale ferromagnetic building blocks under external perturbations is crucial to magnetic vortex based information processing and spintronic devices. All previous studies have focused on magnetic vortex-core switching via external magnetic fields, spin-polarized currents, or spin waves, which have largely prohibited the investigation of novel spin configurations that could emerge from the ground states in ferromagnetic disks and their underlying dynamics. Here, we report in situ visualization of femtosecond laser quenching induced magnetic vortex change in various symmetric ferromagnetic Permalloy disks by Lorentz phase imaging using 4D electron microscopy. Besides the switching of magnetic vortex chirality and polarity, we observed with distinct occurrence frequencies a plenitude of complex magnetic structures that have never been observed by magnetic field or current assisted switching. These complex magnetic structures consist of a number of newly created topological magnetic defects (vortex and antivortex) strictly conserving the topological winding number, demonstrating the direct impact of topological invariant on the magnetization dynamics in ferromagnetic disks. Their spin configurations show mirror or rotation symmetry due to the geometrical confinement of the disks. Combined micromagnetic simulations with the experimental observations reveal the underlying magnetization dynamics and formation mechanism of the optical quenching induced complex magnetic structures. Their distinct occurrence rates are pertinent to their formation-growth energetics and pinning effects at the disk edge. Based on these findings, we propose a paradigm of optical-quenching-assisted fast switching of vortex cores for the control of magnetic vortex based information recording and spintronic devices.
Eutectic related reaction is a special chemical/physical reaction involving multiple phases, solid and liquid. Visualization of phase reaction of composite nanomaterials with high spatial and temporal resolution provides a key understanding of alloy
The glass-like vortex distribution in pulsed laser deposited YBCO thin films is observed by scanning superconducting quantum interference device microscopy and analysed for ordering after cooling in magnetic fields significantly smaller than the Eart
Crystal surfaces are sensitive to the surrounding environment, where atoms left with broken bonds reconstruct to minimize surface energy. In many cases, the surface can exhibit chemical properties unique from the bulk. These differences are important
To visualize the topography of thin oxide films during growth, thereby enabling to study its growth behavior quasi real-time, we have designed and integrated an atomic force microscope (AFM) in a pulsed laser deposition (PLD) vacuum setup. The AFM sc
Scanning tunneling microscope (STM) has presented a revolutionary methodology to the nanoscience and nanotechnology. It enables imaging the topography of surfaces, mapping the distribution of electronic density of states, and manipulating individual