ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomic-scale manipulation and in situ characterization with scanning tunneling microscopy

110   0   0.0 ( 0 )
 نشر من قبل Wonhee Ko
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Scanning tunneling microscope (STM) has presented a revolutionary methodology to the nanoscience and nanotechnology. It enables imaging the topography of surfaces, mapping the distribution of electronic density of states, and manipulating individual atoms and molecules, all at the atomic resolution. In particular, the atom manipulation capability has evolved from fabricating individual nanostructures towards the scalable production of the atomic-sized devices bottom-up. The combination of precision synthesis and in situ characterization of the atomically precise structures has enabled direct visualization of many quantum phenomena and fast proof-of-principle testing of quantum device functions with real-time feedback to guide the improved synthesis. In this article, several representative examples are reviewed to demonstrate the recent development of atomic scale manipulation. Especially, the review focuses on the progress that address the quantum properties by design through the precise control of the atomic structures in several technologically relevant materials systems. Besides conventional STM manipulations and electronic structure characterization with single-probe STM, integration of multiple atomically precisely controlled probes in a multiprobe STM system vastly extends the capability of in situ characterization to a new dimension where the charge and spin transport behaviors can be examined from mesoscopic to atomic length scale. The automation of the atomic scale manipulation and the integration with the well-established lithographic processes would further push this bottom-up approach to a new level that combines reproducible fabrication, extraordinary programmability, and the ability to produce large-scale arrays of quantum structures.



قيم البحث

اقرأ أيضاً

Defects play a key role in determining the properties of most materials and, because they tend to be highly localized, characterizing them at the single-defect level is particularly important. Scanning tunneling microscopy (STM) has a history of imag ing the electronic structure of individual point defects in conductors, semiconductors, and ultrathin films, but single-defect electronic characterization at the nanometer-scale remains an elusive goal for intrinsic bulk insulators. Here we report the characterization and manipulation of individual native defects in an intrinsic bulk hexagonal boron nitride (BN) insulator via STM. Normally, this would be impossible due to the lack of a conducting drain path for electrical current. We overcome this problem by employing a graphene/BN heterostructure, which exploits graphenes atomically thin nature to allow visualization of defect phenomena in the underlying bulk BN. We observe three different defect structures that we attribute to defects within the bulk insulating boron nitride. Using scanning tunneling spectroscopy (STS), we obtain charge and energy-level information for these BN defect structures. In addition to characterizing such defects, we find that it is also possible to manipulate them through voltage pulses applied to our STM tip.
Hydrogenation of nitrogen (N) doped GaAs allows for reversible tuning of the bandgap and the creation of site controlled quantum dots through the manipulation of N-nH complexes, N-nH complexes, wherein a nitrogen atom is surrounded by n hydrogen (H) atoms. Here we employ cross-sectional scanning tunneling microscopy (X-STM) to study these complexes in the GaAs (110) surface at the atomic scale. In addition to that we performed density functional theory (DFT) calculations to determine the atomic properties of the N-nH complexes. We argue that at or near the (110) GaAs surface two H atoms from N-nH complexes dissociate as an H$_2$ molecule. We observe multiple features related to the hydrogenation process, of which a subset is classified as N-1H complexes. These N-1H related features show an apparent reduction of the local density of states (LDOS), characteristic to N atoms in the GaAs (110) surface with an additional apparent localized enhancement of the LDOS located in one of three crystal directions. N-nH features can be manipulated with the STM tip. Showing in one case a switching behavior between two mirror-symmetric states and in another case a removal of the localized enhancement of the LDOS. The disappearance of the bright contrast is most likely a signature of the removal of an H atom from the N-nH complex.
In scanning tunneling experiments on semiconductor surfaces, the energy scale within the tunneling junction is usually unknown due to tip-induced band bending. Here, we experimentally recover the zero point of the energy scale by combining scanning t unneling microscopy with Kelvin probe force spectroscopy. With this technique, we revisit shallow acceptors buried in GaAs. Enhanced acceptor-related conductance is observed in negative, zero, and positive band-bending regimes. An Anderson-Hubbard model is used to rationalize our findings, capturing the crossover between the acceptor state being part of an impurity band for zero band bending, and the acceptor state being split off and localized for strong negative or positive band bending, respectively.
Using low-temperature scanning tunneling microscopy and spectroscopy, we have studied the proximity effect at the interfaces between superconducting Pb island structures and metallic Pb-induced striped-incommensurate phase formed on a Si(111) substra te. Our real-space observation revealed that the step structures on the two-dimensional metallic layer exhibit significant roles on the propagation of the superconducting pair correlation; the proximity effect is terminated by the steps, and in the confined area by the interface and the steps the effect is enhanced. The observed results are explained quantitatively with an elastic reflection of electrons at the step edges based on calculations with the quasi-classical Greens function formulation using Usadel equation.
Silicon (Si) donors in GaAs have been the topic of extensive studies since Si is the most common and well understood n-type dopant in III-V semiconductor devices and substrates. The indirect bandgap of AlAs compared to the direct one of GaAs leads to interesting effects when introducing Si dopants. Here we present a study of cross-sectional scanning tunneling microscopy (X-STM) and density functional theory (DFT) calculations to study Si donors in AlAs at the atomic scale. Based on their crystal symmetry and contrast strengths, we identify Si donors up to four layers below the (110) surface of AlAs. Interestingly, their short-range local density of states (LDOS) is very similar to Si atoms in the (110) surface of GaAs. Additionally we show high-resolution images of Si donors in all these layers. For empty state imaging, the experimental and simulated STM images based on DFT show excellent agreement for Si donor up to two layers below the surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا