ترغب بنشر مسار تعليمي؟ اضغط هنا

Sunspot Structure

65   0   0.0 ( 0 )
 نشر من قبل Sanjiv K. Tiwari
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sanjiv K. Tiwari




اسأل ChatGPT حول البحث

Sunspots contain multiple small-scale structures in the umbra and in the penumbra. Despite extensive research on this subject in pre-Hinode era multiple questions concerning fine-scale structures of sunspots, their formation, evolution and decay remained open. Several of those questions were proposed to be pursued by Hinode (SOT). Here we review some of the achievements on understanding sunspot structure by Hinode in its first 10 years of successful operation. After giving a brief summary and updates on the most recent understanding of sunspot structures, and describing contributions of Hinode to that, we also discuss future directions. This is a section (#7.1) of a long review article on the achievements of Hinode in the first 10 years.



قيم البحث

اقرأ أيضاً

Recent spectro-polarimetric observations of a sunspot showed the formation of bipolar magnetic patches in the mid penumbra and their propagation toward the outer penumbral boundary. The observations were interpreted as being caused by sea-serpent mag netic fields near the solar surface (Sainz Dalda & Bellot Rubio 2008). In this Letter, we develop a 3D radiative MHD numerical model to explain the sea-serpent structure and the wave-like behavior of the penumbral magnetic field lines. The simulations reproduce the observed behavior, suggesting that the sea-serpent phenomenon is a consequence of magnetoconvection in a strongly inclined magnetic field. It involves several physical processes: filamentary structurization, high-speed overturning convective motions in strong, almost horizontal magnetic fields with partially frozen field lines, and traveling convective waves. The results demonstrate a correlation of the bipolar magnetic patches with high-speed Evershed downflows in the penumbra. This is the first time that a 3D numerical model of the penumbra results in downward directed magnetic fields, an essential ingredient of sunspot penumbrae that has eluded explanation until now.
The sunspot penumbra comprises numerous thin, radially elongated filaments that are central for heat transport within the penumbra, but whose structure is still not clear. To investigate the fine-scale structure of these filaments, we perform a depth -dependent inversion of spectropolarimetric data of a sunspot very close to solar disk center obtained by Hinode (SOT/SP). We have used a recently developed spatially coupled 2D inversion scheme which allows us to analyze the fine structure of individual penumbral filaments up to the diffraction limit of the telescope. Filaments of different sizes in all parts of penumbra display very similar magnetic field strengths, inclinations and velocity patterns. The similarities allowed us to average all these filaments and to extract the physical properties common to all of them. This average filament shows upflows associated with an upward pointing field at its inner, umbral end and along its axis, downflows along the lateral edge and strong downflows in the outer end associated with a nearly vertical, strong and downward pointing field. The upflowing plasma is significantly hotter than the downflowing plasma. The hot, tear-shaped head of the averaged filament can be associated with a penumbral grain. The central part of the filament shows nearly horizontal fields with strengths of ~1kG. The field above the filament converges, whereas a diverging trend is seen in the deepest layers near the head of the filament. We put forward a unified observational picture of a sunspot penumbral filament. It is consistent with such a filament being a magneto-convective cell, in line with recent MHD simulations. The uniformity of its properties over the penumbra sets constraints on penumbral models and simulations. The complex and inhomogeneous structure of the filament provides a natural explanation for a number of long-running controversies in the literature.
The fine-structure of magnetic field of a sunspot penumbra in the upper chromosphere is to be explored and compared to that in the photosphere. High spatial resolution spectropolarimetric observations were recorded with the 1.5-meter GREGOR telescope using the GREGOR Infrared Spectrograph (GRIS). The observed spectral domain includes the upper chromospheric He I triplet at 1083.0 nm and the photospheric Si I 1082.7 nm and Ca I 1083.3 nm spectral lines. The upper chromospheric magnetic field is obtained by inverting the He I triplet assuming a Milne-Eddington type model atmosphere. A height dependent inversion was applied to the Si I 1082.7 nm and Ca I 1083.3 nm lines to obtain the photospheric magnetic field. We find that the inclination of the magnetic field shows variations in the azimuthal direction both in the photosphere, but also in the upper chromosphere. The chromospheric variations remarkably well coincide with the variations in the inclination of the photospheric field and resemble the well-known spine and inter-spine structure in the photospheric layers of penumbrae. The typical peak-to-peak variations in the inclination of the magnetic field in the upper chromosphere is found to be 10-15 degree, i.e., roughly half the variation in the photosphere. In contrast, the magnetic field strength of the observed penumbra does not show variations on small spatial scales in the upper chromosphere. Thanks to the high spatial resolution observations possible with the GREGOR telescope at 1.08 microns, we find that the prominent small-scale fluctuations in the magnetic field inclination, which are a salient part of the property of sunspot penumbral photospheres, also persist in the chromosphere, although at somewhat reduced amplitudes. Such a complex magnetic configuration may facilitate penumbral chromospheric dynamic phenomena, such as penumbral micro-jets or transient bright dots.
Coronal mass ejections (CMEs) originate from closed magnetic field regions on the Sun, which are active regions and quiescent filament regions. The energetic populations such as halo CMEs, CMEs associated with magnetic clouds, geoeffective CMEs, CMEs associated with solar energetic particles and interplanetary type II radio bursts, and shock-driving CMEs have been found to originate from sunspot regions. The CME and flare occurrence rates are found to be correlated with the sunspot number, but the correlations are significantly weaker during the maximum phase compared to the rise and declining phases. We suggest that the weaker correlation results from high-latitude CMEs from the polar crown filament regions that are not related to sunspots.
We use 5 test data series to quantify putative discontinuities around 1946 in 5 annual-mean sunspot number or group number sequences. The series tested are: the original and n
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا