ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement dynamics in a Kerr spacetime

96   0   0.0 ( 0 )
 نشر من قبل Gabriel Menezes
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Menezes




اسأل ChatGPT حول البحث

We consider the entanglement dynamics between two-level atoms in a rotating black hole background. In our model the two-atom system is envisaged as an open system coupled with a massless scalar field prepared in one of the physical vacuum states of interest. We employ the quantum master equation in the Born-Markov approximation in order to describe the time evolution of the atomic subsystem. We investigate two different states of motion for the atoms, namely static atoms and also stationary atoms with zero angular momentum. The purpose of this work is to expound the impact on the creation of entanglement coming from the combined action of the different physical processes underlying the Hawking effect and the Unruh-Starobinskii effect. We demonstrate that, in the scenario of rotating black holes, the degree of quantum entanglement is significantly modified due to the phenomenon of superradiance in comparison with the analogous cases in a Schwarzschild spacetime. In the perspective of a zero angular momentum observer (ZAMO), one is allowed to probe entanglement dynamics inside the ergosphere, since static observers cannot exist within such a region. On the other hand, the presence of superradiant modes could be a source for violation of complete positivity. This is verified when the quantum field is prepared in the Frolov-Thorne vacuum state. In this exceptional situation, we raise the possibility that the loss of complete positivity is due to the breakdown of the Markovian approximation, which means that any arbitrary physically admissible initial state of the two atoms would not be capable to hold, with time evolution, its interpretation as a physical state inasmuch as negative probabilities are generated by the dynamical map.



قيم البحث

اقرأ أيضاً

We investigate the late-time tail of the retarded Green function for the dynamics of a linear field perturbation of Kerr spacetime. We develop an analytical formalism for obtaining the late-time tail up to arbitrary order for general integer spin of the field. We then apply this formalism to obtain the details of the first five orders in the late-time tail of the Green function for the case of a scalar field: to leading order we recover the known power law tail $t^{-2ell-3}$, and at third order we obtain a logarithmic correction, $t^{-2ell-5}ln t$, where $ell$ is the field multipole.
72 - G. Menezes 2016
We consider radiative processes of an atom in a rotating black-hole background. We assume the atom, represented by a hypothetical two-level system, is coupled via a monopole interaction with a massless quantum scalar field prepared in each one of the usual physical vacuum states of interest. We constrain ourselves to two different states of motion for the atom, namely a static situation in which the atom is placed at a fixed radial distance, and also the case in which it has a stationary motion but with zero angular momentum. We study the structure of the rate of variation of the atomic energy. The intention is to clarify in a quantitative way the effect of the distinguished contributions of vacuum fluctuations and radiation reaction on spontaneous excitation and on spontaneous emission of atoms. In particular, we are interested in the comprehension of the combined action of the different physical processes underlying the Hawking effect in the scenario of rotating black holes as well as the Unruh-Starobinskii effect. We demonstrate that, in the case of static atoms, spontaneous excitation is also connected with the Unruh-Starobinskii effect, but only in the case of the quantum field prepared in the Frolov-Thorne vacuum state. In addition, we show that, in the ZAMOs perspective, the Boulware vacuum state contains an outward flux of particles as a consequence of the black-hole superradiance. The possible relevance of the findings in the present work is discussed.
We calculate Sorkins spacetime entanglement entropy of a Gaussian scalar field for complementary regions in the 2d cylinder spacetime and show that it has the Calabrese-Cardy form. We find that the cut-off dependent term is universal when we use a co variant UV cut-off. In addition, we show that the relative size-dependent term exhibits complementarity. Its coefficient is however not universal and depends on the choice of pure state. It asymptotes to the universal form within a natural class of pure states.
By introducing a specific etheric-like vector in the Dirac equation with Lorentz Invariance Violation (LIV) in the curved spacetime, an improved method for quantum tunneling radiation of fermions is proposed. As an example, we apply this new method t o a charged axisymmetric Kerr-Newman black hole. Firstly, considering LIV theory, we derive a modified dynamical equation of fermion with spin 1/2 in the Kerr-Newman black hole spacetime. Then we solve the equation and find the increase or decrease of black holes Hawking temperature and entropy are related to constants $a$ and $c$ of the Dirac equation with LIV in the curved spacetime. As $c$ is positive, the new Hawking temperature is about $ frac{sqrt{1+2a+2cmk_r^2}}{sqrt{1+2a}}$ times higher than that without modification, but the entropy will decrease. We also make a brief discussion for the case of high spin fermions.
76 - G.W. Gibbons 2017
The problem of finding null geodesics in a stationary Lorentzian spacetime is known to to be equivalent to finding the geodsics of a Randers-Finlser structure. This latter problem is equivalent to finding the motion of charged particles moving on a R iemannian manifold in a background magnetic field or equivalently, by a generalization of Fermats principle, to Zermelos problem of extremizing travel time of an aeroplane in the presence of a wind. In this paper this triad of equivalences is extended to include recent model of the spread of a forest fire which uses form of Huyghens principle. The construction may also be used to solve a problem in quantum control theory in which one seeks a control Hamiltonia taking an initial state of a quantum mechanical system with its own Hamiltonian to a desired final state in least time. The associated stationary spacetime may be thought of as defined on an extended quantum phase space (Souriaus evolution space), the space of quantum stares being complex projective space equipped with its Fubini-Study Kahler metric. It is possible that this spacetime view point may provide insights relevant for our understanding of quantum gravity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا