ﻻ يوجد ملخص باللغة العربية
The problem of finding null geodesics in a stationary Lorentzian spacetime is known to to be equivalent to finding the geodsics of a Randers-Finlser structure. This latter problem is equivalent to finding the motion of charged particles moving on a Riemannian manifold in a background magnetic field or equivalently, by a generalization of Fermats principle, to Zermelos problem of extremizing travel time of an aeroplane in the presence of a wind. In this paper this triad of equivalences is extended to include recent model of the spread of a forest fire which uses form of Huyghens principle. The construction may also be used to solve a problem in quantum control theory in which one seeks a control Hamiltonia taking an initial state of a quantum mechanical system with its own Hamiltonian to a desired final state in least time. The associated stationary spacetime may be thought of as defined on an extended quantum phase space (Souriaus evolution space), the space of quantum stares being complex projective space equipped with its Fubini-Study Kahler metric. It is possible that this spacetime view point may provide insights relevant for our understanding of quantum gravity.
The current race in quantum communication -- endeavouring to establish a global quantum network -- must account for special and general relativistic effects. The well-studied general relativistic effects include Shapiro time-delay, gravitational lens
We start from a static, spherically symmetric space-time in the presence of an electrostatic field and construct the mini-superspace Lagrangian that reproduces the well known Reissner - Nordstrom solution. We identify the classical integrals of motio
We consider the entanglement dynamics between two-level atoms in a rotating black hole background. In our model the two-atom system is envisaged as an open system coupled with a massless scalar field prepared in one of the physical vacuum states of i
In classical General Relativity, the values of fields on spacetime are uniquely determined by their values at an initial time within the domain of dependence of this initial data surface. However, it may occur that the spacetime under consideration e
We present a proof that quantum Yang-Mills theory can be consistently defined as a renormalized, perturbative quantum field theory on an arbitrary globally hyperbolic curved, Lorentzian spacetime. To this end, we construct the non-commutative algebra