ﻻ يوجد ملخص باللغة العربية
Cycles are fundamental to human health and behavior. However, modeling cycles in time series data is challenging because in most cases the cycles are not labeled or directly observed and need to be inferred from multidimensional measurements taken over time. Here, we present CyHMMs, a cyclic hidden Markov model method for detecting and modeling cycles in a collection of multidimensional heterogeneous time series data. In contrast to previous cycle modeling methods, CyHMMs deal with a number of challenges encountered in modeling real-world cycles: they can model multivariate data with discrete and continuous dimensions; they explicitly model and are robust to missing data; and they can share information across individuals to model variation both within and between individual time series. Experiments on synthetic and real-world health-tracking data demonstrate that CyHMMs infer cycle lengths more accurately than existing methods, with 58% lower error on simulated data and 63% lower error on real-world data compared to the best-performing baseline. CyHMMs can also perform functions which baselines cannot: they can model the progression of individual features/symptoms over the course of the cycle, identify the most variable features, and cluster individual time series into groups with distinct characteristics. Applying CyHMMs to two real-world health-tracking datasets -- of menstrual cycle symptoms and physical activity tracking data -- yields important insights including which symptoms to expect at each point during the cycle. We also find that people fall into several groups with distinct cycle patterns, and that these groups differ along dimensions not provided to the model. For example, by modeling missing data in the menstrual cycles dataset, we are able to discover a medically relevant group of birth control users even though information on birth control is not given to the model.
Discovering patterns and detecting anomalies in individual travel behavior is a crucial problem in both research and practice. In this paper, we address this problem by building a probabilistic framework to model individual spatiotemporal travel beha
Objectives To test the feasibility of using Twitter data to assess determinants of consumers health behavior towards Human papillomavirus (HPV) vaccination informed by the Integrated Behavior Model (IBM). Methods We used three Twitter datasets span
How can we model influence between individuals in a social system, even when the network of interactions is unknown? In this article, we review the literature on the influence model, which utilizes independent time series to estimate how much the sta
The outbreak of COVID-19 highlights the need for a more harmonized, less privacy-concerning, easily accessible approach to monitoring the human mobility that has been proved to be associated with the viral transmission. In this study, we analyzed 587
We propose a mixed-methods approach to understanding the human infrastructure underlying StreetNet (SNET), a distributed, community-run intranet that serves as the primary Internet in Havana, Cuba. We bridge ethnographic studies and the study of soci