ﻻ يوجد ملخص باللغة العربية
Objectives To test the feasibility of using Twitter data to assess determinants of consumers health behavior towards Human papillomavirus (HPV) vaccination informed by the Integrated Behavior Model (IBM). Methods We used three Twitter datasets spanning from 2014 to 2018. We preprocessed and geocoded the tweets, and then built a rule-based model that classified each tweet into either promotional information or consumers discussions. We applied topic modeling to discover major themes, and subsequently explored the associations between the topics learned from consumers discussions and the responses of HPV-related questions in the Health Information National Trends Survey (HINTS). Results We collected 2,846,495 tweets and analyzed 335,681 geocoded tweets. Through topic modeling, we identified 122 high-quality topics. The most discussed consumer topic is cervical cancer screening; while in promotional tweets, the most popular topic is to increase awareness of HPV causes cancer. 87 out of the 122 topics are correlated between promotional information and consumers discussions. Guided by IBM, we examined the alignment between our Twitter findings and the results obtained from HINTS. 35 topics can be mapped to HINTS questions by keywords, 112 topics can be mapped to IBM constructs, and 45 topics have statistically significant correlations with HINTS responses in terms of geographic distributions. Conclusion Not only mining Twitter to assess consumers health behaviors can obtain results comparable to surveys but can yield additional insights via a theory-driven approach. Limitations exist, nevertheless, these encouraging results impel us to develop innovative ways of leveraging social media in the changing health communication landscape.
The outbreak of COVID-19 highlights the need for a more harmonized, less privacy-concerning, easily accessible approach to monitoring the human mobility that has been proved to be associated with the viral transmission. In this study, we analyzed 587
Cycles are fundamental to human health and behavior. However, modeling cycles in time series data is challenging because in most cases the cycles are not labeled or directly observed and need to be inferred from multidimensional measurements taken ov
Social Media offer a vast amount of geo-located and time-stamped textual content directly generated by people. This information can be analysed to obtain insights about the general state of a large population of users and to address scientific questi
On social media platforms, like Twitter, users are often interested in gaining more influence and popularity by growing their set of followers, aka their audience. Several studies have described the properties of users on Twitter based on static snap
How do complex social systems evolve in the modern world? This question lies at the heart of social physics, and network analysis has proven critical in providing answers to it. In recent years, network analysis has also been used to gain a quantitat