ترغب بنشر مسار تعليمي؟ اضغط هنا

Routing the emission of a near-surface light source by a magnetic field

106   0   0.0 ( 0 )
 نشر من قبل Ilya Akimov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magneto-optical phenomena such as the Faraday and Kerr effects play a decisive role for establishing control over polarization and intensity of optical fields propagating through a medium. Intensity effects where the direction of light emission depends on the orientation of the external magnetic field are of particular interest as they can be used for routing the light. We report on a new class of transverse emission phenomena for light sources located in the vicinity of a surface, where directionality is established perpendicularly to the externally applied magnetic field. We demonstrate the routing of emission for excitons in a diluted-magnetic-semiconductor quantum well. The directionality is significantly enhanced in hybrid plasmonic semiconductor structures due to the generation of plasmonic spin fluxes at the metal-semiconductor interface.



قيم البحث

اقرأ أيضاً

We study experimentally and theoretically the temperature dependence of transverse magnetic routing of light emission from hybrid plasmonic-semiconductor quantum well structures where the exciton emission from the quantum well is routed into surface plasmon polaritons propagating along a nearby semiconductor-metal interface. In II-VI and III-V direct band semiconductors the magnitude of routing is governed by the circular polarization of exciton optical transitions, that is induced by a magnetic field. For structures comprising a (Cd,Mn)Te/(Cd,Mg)Te diluted magnetic semiconductor quantum well we observe a strong directionality of the emission up to 15% at low temperature of 20 K and magnetic field of 485 mT due to giant Zeeman splitting of holes mediated via the strong exchange interaction with Mn$^{2+}$ ions. For increasing temperatures towards room-temperature the magnetic susceptibility decreases and the directionality strongly decreases to 4% at T = 45 K. We also propose an alternative design based on a non-magnetic (In,Ga)As/(In,Al)As quantum well structure, suitable for higher temperatures. According to our calculations, such structure can demonstrate emission directionality up to 5% for temperatures below 200 K and moderate magnetic fields of 1 T.
The authors report on the realization of ordered arrays of light-emitting conjugated polymer nanofibers by near-field electrospinning. The fibers, made by poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene], have diameters of few hundreds of na nometers and emission peaked at 560 nm. The observed blue-shift compared to the emission from reference films is attributed to different polymer packing in the nanostructures. Optical confinement in the fibers is also analyzed through self-waveguided emission. These results open interesting perspectives for realizing complex and ordered architectures by light-emitting nanofibers, such as photonic circuits, and for the precise positioning and integration of conjugated polymer fibers into light-emitting devices.
In this Letter we show that the strong coupling between a disordered set of molecular emitters and surface plasmons leads to the formation of spatially coherent hybrid states extended on acroscopic distances. Young type interferometric experiments pe rformed on a system of J-aggregated dyes spread on a silver layer evidence the coherent emission from different molecular emitters separated by several microns. The coherence is absent in systems in the weak coupling regime demonstrating the key role of the hybridization of the molecules with the plasmon.
A hallmark of quantum control is the ability to manipulate quantum emission at the nanoscale. Through scanning tunneling microscopy induced luminescence (STML) we are able to generate plasmonic light originating from inelastic tunneling processes tha t occur in a few-nanometer thick molecular film of C$_{60}$ deposited on Ag(111). Single photon emission, not of excitonic origin, occurs with a 1/$e$ lifetime of a tenth of a nanosecond or less, as shown through Hanbury Brown and Twiss photon intensity interferometry. We have performed tight-binding calculations of the electronic structure for the combined Ag-C$_{60}$-tip system and obtained good agreement with experiment. The tunneling happens through electric field induced split-off states below the C$_{60}$ LUMO band, which leads to a Coulomb blockade effect and single photon emission. The use of split-off states is shown to be a general technique that has special relevance for narrowband materials with a large bandgap.
Multiphoton-ionized electrons are born into a strong light field that will determine their short-term future. By controlling the infrared beam, we enable atoms or molecules to generate extreme ultraviolet (XUV) pulses and synthesize attosecond pulses - the shortest controlled events ever produced. Here we show that a weak obliquely incident beam imposes an optical grating on the fundamental beam, resulting in a spatially modulated attosecond pulse. We observe the modulation on a spectrally resolved near-field XUV image, encoding all information of the spectral phase of the recollision electron and, therefore, the attosecond pulse produced by structureless atoms. Near-field imaging is an efficient method for measuring the duration of attosecond pulses, especially important for soft X-ray pulses created in helium. For more complex systems, it includes auto ionization and giant plasmon resonances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا