ﻻ يوجد ملخص باللغة العربية
Multiphoton-ionized electrons are born into a strong light field that will determine their short-term future. By controlling the infrared beam, we enable atoms or molecules to generate extreme ultraviolet (XUV) pulses and synthesize attosecond pulses - the shortest controlled events ever produced. Here we show that a weak obliquely incident beam imposes an optical grating on the fundamental beam, resulting in a spatially modulated attosecond pulse. We observe the modulation on a spectrally resolved near-field XUV image, encoding all information of the spectral phase of the recollision electron and, therefore, the attosecond pulse produced by structureless atoms. Near-field imaging is an efficient method for measuring the duration of attosecond pulses, especially important for soft X-ray pulses created in helium. For more complex systems, it includes auto ionization and giant plasmon resonances.
We report on an all-optical magnetometric technique based on nonlinear magneto-optical rotation with amplitude-modulated light. The method enables sensitive magnetic-field measurements in a broad dynamic range. We demonstrate the sensitivity of $4.3t
Optical excitation transfer in nanostructured matter has been intensively studied in various material systems for versatile applications. Herein, we discuss the percolation of optical excitations in randomly organized nanostructures caused by optical
A method for diffracting the weak probe beam into unidirectional and higher-order directions is proposed via a novel Rydberg electromagnetically induced grating, providing a new way for the implementations of quantum devices with cold Rydberg atoms.
We demonstrate a compact magneto-optical trap (MOT) of alkaline-earth atoms using a nanofabricated diffraction grating chip. A single input laser beam, resonant with the broad $^1$S$_0,rightarrow ,^1$P$_1$ transition of strontium, forms the MOT in co
We present studies of strong coupling in single-photon photoassociation of cesium dimers using an optical dipole trap. A thermodynamic model of the trap depletion dynamics is employed to extract absolute rate coefficents. From the dependence of the r