ﻻ يوجد ملخص باللغة العربية
The prospect of pileup induced backgrounds at the High Luminosity LHC (HL-LHC) has stimulated intense interest in developing technologies for charged particle detection with accurate timing at high rates. The required accuracy follows directly from the nominal interaction distribution within a bunch crossing ($sigma_zsim5$ cm, $sigma_tsim170$ ps). A time resolution of the order of 20-30 ps would lead to significant reduction of these backgrounds. With this goal, we present a new detection concept called PICOSEC, which is based on a two-stage Micromegas detector coupled to a Cherenkov radiator and equipped with a photocathode. First results obtained with this new detector yield a time resolution of 24 ps for 150 GeV muons, and 76 ps for single photoelectrons.
The PICOSEC detection concept consists in a two-stage Micromegas detector coupled to a Cherenkov radiator and equipped with a photocathode. A proof of concept has already been tested: a single-photoelectron response of 76 ps has been measured with a
The prospect of pileup induced backgrounds at the High Luminosity LHC (HL-LHC) has stimulated intense interest in technology for charged particle timing at high rates. In contrast to the role of timing for particle identification, which has driven in
The experimental requirements in near future accelerators (e.g. High Luminosity-LHC) has stimulated intense interest in development of detectors with high precision timing capabilities. With this as a goal, a new detection concept called PICOSEC, whi
The multi-pad PICOSEC-Micromegas is an improved detector prototype with a segmented anode, consisting of 19 hexagonal pads. Detailed studies are performed with data collected in a muon beam over four representative pads. We demonstrate that such a de
The PICOSEC Micromegas detector can time the arrival of Minimum Ionizing Particles with a sub-25 ps precision. A very good timing resolution in detecting single photons is also demonstrated in laser beams. The PICOSEC timing resolution is determined