ﻻ يوجد ملخص باللغة العربية
The experimental requirements in near future accelerators (e.g. High Luminosity-LHC) has stimulated intense interest in development of detectors with high precision timing capabilities. With this as a goal, a new detection concept called PICOSEC, which is based to a two-stage MicroMegas detector coupled to a Cherenkov radiator equipped with a photocathode has been developed. Results obtained with this new detector yield a time resolution of 24,ps for 150,GeV muons and 76,ps for single photoelectrons. In this paper we will report on the performance of the PICOSEC in test beams, as well as simulation studies and modelling of its timing characteristics.
The prospect of pileup induced backgrounds at the High Luminosity LHC (HL-LHC) has stimulated intense interest in developing technologies for charged particle detection with accurate timing at high rates. The required accuracy follows directly from t
The prospect of pileup induced backgrounds at the High Luminosity LHC (HL-LHC) has stimulated intense interest in technology for charged particle timing at high rates. In contrast to the role of timing for particle identification, which has driven in
The PICOSEC detection concept consists in a two-stage Micromegas detector coupled to a Cherenkov radiator and equipped with a photocathode. A proof of concept has already been tested: a single-photoelectron response of 76 ps has been measured with a
The PICOSEC Micromegas detector can time the arrival of Minimum Ionizing Particles with a sub-25 ps precision. A very good timing resolution in detecting single photons is also demonstrated in laser beams. The PICOSEC timing resolution is determined
The multi-pad PICOSEC-Micromegas is an improved detector prototype with a segmented anode, consisting of 19 hexagonal pads. Detailed studies are performed with data collected in a muon beam over four representative pads. We demonstrate that such a de