ﻻ يوجد ملخص باللغة العربية
We create a two-dimensional electron system (2DES) at the interface between EuO, a ferromagnetic insulator, and SrTiO3, a transparent non-magnetic insulator considered the bedrock of oxide-based electronics. This is achieved by a controlled in-situ redox reaction between pure metallic Eu deposited at room temperature on the surface of SrTiO3, an innovative bottom-up approach that can be easily generalized to other functional oxides and scaled to applications. Additionally, we find that the resulting EuO capping layer can be tuned from paramagnetic to ferromagnetic, depending on the layer thickness. These results demonstrate that the simple, novel technique of creating 2DESs in oxides by deposition of elementary reducing agents [T. C. Rodel et al., Adv. Mater. 28, 1976 (2016)] can be extended to simultaneously produce an active, e.g. magnetic, capping layer enabling the realization and control of additional functionalities in such oxide-based 2DESs.
We have investigated the illumination effect on the magnetotransport properties of a two-dimensional electron system at the LaAlO$_3$/SrTiO$_3$ interface. The illumination significantly reduces the zero-field sheet resistance, eliminates the Kondo ef
We report the angular dependence of magnetoresistance in two-dimensional electron gas at LaAlO$_3$/SrTiO$_3$ interface. We find that this interfacial magnetoresistance exhibits a similar angular dependence to the spin Hall magnetoresistance observed
We have used grazing-angle infrared spectroscopy to detect the Berreman effect (BE) in the quasi-two-dimensional electron system (q-2DES) which forms spontaneously at the interface between SrTiO$_{3}$ (STO) and a thin film of LaAlO$_3$ (LAO). From th
We have studied the electronic properties of the 2D electron liquid present at the LaAlO$_3$/SrTiO$_3$ interface in series of samples prepared at different growth temperatures. We observe that interfaces fabricated at 650{deg}C exhibit the highest lo
We report the observation of a two-dimensional electron system (2DES) at the $(110)$ surface of the transparent bulk insulator SnO$_2$, and the tunability of its carrier density by means of temperature or Eu deposition. The 2DES is insensitive to sur