ترغب بنشر مسار تعليمي؟ اضغط هنا

Interfacial Rashba magnetoresistance of two-dimensional electron gas at LaAlO$_3$/SrTiO$_3$ interface

132   0   0.0 ( 0 )
 نشر من قبل Kyung-Jin Lee
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the angular dependence of magnetoresistance in two-dimensional electron gas at LaAlO$_3$/SrTiO$_3$ interface. We find that this interfacial magnetoresistance exhibits a similar angular dependence to the spin Hall magnetoresistance observed in ferromagnet/heavy metal bilayers, which has been so far discussed in the framework of bulk spin Hall effect of heavy metal layer. The observed magnetoresistance is in qualitative agreement with theoretical model calculation including both Rashba spin-orbit coupling and exchange interaction. Our result suggests that magnetic interfaces subject to spin-orbit coupling can generate a nonnegligible contribution to the spin Hall magnetoresistance and the interfacial spin-orbit coupling effect is therefore key to the understanding of various spin-orbit-coupling-related phenomena in magnetic/non-magnetic bilayers.



قيم البحث

اقرأ أيضاً

184 - I. Leermakers , K. Rubi , M. Yang 2021
We have investigated the illumination effect on the magnetotransport properties of a two-dimensional electron system at the LaAlO$_3$/SrTiO$_3$ interface. The illumination significantly reduces the zero-field sheet resistance, eliminates the Kondo ef fect at low-temperature, and switches the negative magnetoresistance into the positive one. A large increase in the density of high-mobility carriers after illumination leads to quantum oscillations in the magnetoresistance originating from the Landau quantization. The carrier density ($sim 2 times 10^{12}$ cm$^{-2}$) and effective mass ($sim 1.7 ~m_e$) estimated from the oscillations suggest that the high-mobility electrons occupy the d$_{xz/yz}$ subbands of Ti:t$_{2g}$ orbital extending deep within the conducting sheet of SrTiO$_3$. Our results demonstrate that the illumination which induces additional carriers at the interface can pave the way to control the Kondo-like scattering and study the quantum transport in the complex oxide heterostructures.
142 - A. F^ete , C. Cancellieri , D. Li 2015
We have studied the electronic properties of the 2D electron liquid present at the LaAlO$_3$/SrTiO$_3$ interface in series of samples prepared at different growth temperatures. We observe that interfaces fabricated at 650{deg}C exhibit the highest lo w temperature mobility ($approx 10000 textrm{ cm}^2/textrm{Vs}$) and the lowest sheet carrier density ($approx 5times 10^{12} textrm{ cm}^{-2}$). These samples show metallic behavior and Shubnikov-de Haas oscillations in their magnetoresistance. Samples grown at higher temperatures (800-900{deg}C) display carrier densities in the range of $approx 2-5 times 10^{13} textrm{ cm}^{-2}$ and mobilities of $approx 1000 textrm{ cm}^2/textrm{Vs}$ at 4K. Reducing their carrier density by field effect to $8times 10^{12} textrm{ cm}^{-2}$ lowers their mobilites to $approx 50 textrm{ cm}^2/textrm{Vs}$ bringing the conductance to the weak-localization regime.
We investigate the magnetotransport properties of a two-dimensional electron gas with anisotropic k-cubic Rashba interaction at the $rm{LaAlO_3}$/$rm{SrTiO_3}$ interface. The Landau levels and density of states of the system as well as the magnetotra nsport coefficients are evaluated. A somehow anomalous beating pattern in low magnetic field regime is found both in the density profile and magnetoresistivity. We discuss the impact of electron density, Landau level broadening and Rashba spin-orbit constant on the appearance of the beatings in low magnetic fields and find that at low electron concentrations and not very strong spin-orbit interactions the beatings smooth out. On the other hand, as the magnetic field increases, the Zeeman term becomes the dominant splitting mechanism leading to the spin-split peaks in SdH oscillations. We also show that the observation of the beatings in low magnetic fields needs a system with rather higher carrier concentration so that the beatings persist up to sufficiently large fields where the oscillations are not smoothed out by Landau level broadening. The quantum Hall plateaus are evaluated and we show the Chern number with both even and odd values is replaced by the odd numbers when two subband energies are close with spin degenerate energy levels. Along with the numerical evaluation of the magnetotransport properties, a perturbative calculation is also performed which can be used in the case of low densities and not very large filling factors.
Strong Rashba spin-orbit coupling (SOC) of the two-dimensional electron gas (2DEG) at the oxide interface $mathrm{LaAlO_{3}/SrTiO_{3}}$ underlies a variety of exotic physics, but its nature is still under debate. We derive an effective Hamiltonian fo r the 2DEG at the oxide interface $mathrm{LaAlO_{3}/SrTiO_{3}}$ and find a different anisotropic Rashba SOC for the $d_{xz}$ and $d_{yz}$ orbitals. This anisotropic Rashba SOC leads to anisotropic static spin susceptibilities and also distinctive behavior of the spin Hall conductivity. These unique spin responses may be used to determine the nature of the Rashba SOC experimentally and shed light on the orbital origin of the 2DEG.
The two-dimensional electron gas (2DEG) at the interface between LaAlO$_3$ (LAO) and SrTiO$_3$ (STO) has become one of the most fascinating and highly-debated oxide systems of recent times. Here we propose that a one-dimensional electron gas (1DEG) c an be engineered at the step edges of the LAO/STO interface. These predictions are supported by first principles calculations and electrostatic modeling which elucidate the origin of the 1DEG as an electronic reconstruction to compensate a net surface charge in the step edge. The results suggest a novel route to increasing the functional density in these electronic interfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا