ﻻ يوجد ملخص باللغة العربية
This paper investigates Voevodskys univalence axiom in intensional Martin-Lof type theory. In particular, it looks at how univalence can be derived from simpler axioms. We first present some existing work, collected together from various published and unpublished sources; we then present a new decomposition of the univalence axiom into simpler axioms. We argue that these axioms are easier to verify in certain potential models of univalent type theory, particularly those models based on cubical sets. Finally we show how this decomposition is relevant to an open problem in type theory.
It is well known that univalence is incompatible with uniqueness of identity proofs (UIP), the axiom that all types are h-sets. This is due to finite h-sets having non-trivial automorphisms as soon as they are not h-propositions. A natural question
A notion of probabilistic lambda-calculus usually comes with a prescribed reduction strategy, typically call-by-name or call-by-value, as the calculus is non-confluent and these strategies yield different results. This is a break with one of the main
Temporal logic based synthesis approaches are often used to find trajectories that are correct-by-construction for tasks in systems with complex behavior. Some examples of such tasks include synchronization for multi-agent hybrid systems, reactive mo
A new axiom is proposed, the Ground Axiom, asserting that the universe is not a nontrivial set-forcing extension of any inner model. The Ground Axiom is first-order expressible, and any model of ZFC has a class-forcing extension which satisfies it. T
A new axiom is proposed, the Ground Axiom, asserting that the universe is not a nontrivial set forcing extension of any inner model. The Ground Axiom is first-order expressible, and any model of ZFC has a class forcing extension which satisfies it. T