ترغب بنشر مسار تعليمي؟ اضغط هنا

Decomposing the Univalence Axiom

132   0   0.0 ( 0 )
 نشر من قبل Ian Orton
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper investigates Voevodskys univalence axiom in intensional Martin-Lof type theory. In particular, it looks at how univalence can be derived from simpler axioms. We first present some existing work, collected together from various published and unpublished sources; we then present a new decomposition of the univalence axiom into simpler axioms. We argue that these axioms are easier to verify in certain potential models of univalent type theory, particularly those models based on cubical sets. Finally we show how this decomposition is relevant to an open problem in type theory.



قيم البحث

اقرأ أيضاً

It is well known that univalence is incompatible with uniqueness of identity proofs (UIP), the axiom that all types are h-sets. This is due to finite h-sets having non-trivial automorphisms as soon as they are not h-propositions. A natural question is then whether univalence restricted to h-propositions is compatible with UIP. We answer this affirmatively by constructing a model where types are elements of a closed universe defined as a higher inductive type in homotopy type theory. This universe has a path constructor for simultaneous partial univalent completion, i.e., restricted to h-propositions. More generally, we show that univalence restricted to $(n-1)$-types is consistent with the assumption that all types are $n$-truncated. Moreover we parametrize our construction by a suitably well-behaved container, to abstract from a concrete choice of type formers for the universe.
A notion of probabilistic lambda-calculus usually comes with a prescribed reduction strategy, typically call-by-name or call-by-value, as the calculus is non-confluent and these strategies yield different results. This is a break with one of the main advantages of lambda-calculus: confluence, which means results are independent from the choice of strategy. We present a probabilistic lambda-calculus where the probabilistic operator is decomposed into two syntactic constructs: a generator, which represents a probabilistic event; and a consumer, which acts on the term depending on a given event. The resulting calculus, the Probabilistic Event Lambda-Calculus, is confluent, and interprets the call-by-name and call-by-value strategies through different interpretations of the probabilistic operator into our generator and consumer constructs. We present two notions of reduction, one via fine-grained local rewrite steps, and one by generation and consumption of probabilistic events. Simple types for the calculus are essentially standard, and they convey strong normalization. We demonstrate how we can encode call-by-name and call-by-value probabilistic evaluation.
Temporal logic based synthesis approaches are often used to find trajectories that are correct-by-construction for tasks in systems with complex behavior. Some examples of such tasks include synchronization for multi-agent hybrid systems, reactive mo tion planning for robots. However, the scalability of such approaches is of concern and at times a bottleneck when transitioning from theory to practice. In this paper, we identify a class of problems in the GR(1) fragment of linear-time temporal logic (LTL) where the synthesis problem allows for a decomposition that enables easy parallelization. This decomposition also reduces the alternation depth, resulting in more efficient synthesis. A multi-agent robot gridworld example with coordination tasks is presented to demonstrate the application of the developed ideas and also to perform empirical analysis for benchmarking the decomposition-based synthesis approach.
61 - Jonas Reitz 2006
A new axiom is proposed, the Ground Axiom, asserting that the universe is not a nontrivial set-forcing extension of any inner model. The Ground Axiom is first-order expressible, and any model of ZFC has a class-forcing extension which satisfies it. T he Ground Axiom is independent of many well-known set-theoretic assertions including the Generalized Continuum Hypothesis, the assertion V=HOD that every set is ordinal definable, and the existence of measurable and supercompact cardinals. The related Bedrock Axiom, asserting that the universe is a set-forcing extension of a model satisfying the Ground Axiom, is also first-order expressible, and its negation is consistent. As many of these results rely on forcing with proper classes, an appendix is provided giving an exposition of the underlying theory of proper class forcing.
60 - Jonas Reitz 2006
A new axiom is proposed, the Ground Axiom, asserting that the universe is not a nontrivial set forcing extension of any inner model. The Ground Axiom is first-order expressible, and any model of ZFC has a class forcing extension which satisfies it. T he Ground Axiom is independent of many well-known set-theoretic assertions including the Generalized Continuum Hypothesis, the assertion V=HOD that every set is ordinal definable, and the existence of measurable and supercompact cardinals. The related Bedrock Axiom, asserting that the universe is a set forcing extension of a model satisfying the Ground Axiom, is also first-order expressible, and its negation is consistent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا