ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying WIMP dark matter from particle and astroparticle data

138   0   0.0 ( 0 )
 نشر من قبل Christopher McCabe
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the most promising strategies to identify the nature of dark matter consists in the search for new particles at accelerators and with so-called direct detection experiments. Working within the framework of simplified models, and making use of machine learning tools to speed up statistical inference, we address the question of what we can learn about dark matter from a detection at the LHC and a forthcoming direct detection experiment. We show that with a combination of accelerator and direct detection data, it is possible to identify newly discovered particles as dark matter, by reconstructing their relic density assuming they are weakly interacting massive particles (WIMPs) thermally produced in the early Universe, and demonstrating that it is consistent with the measured dark matter abundance. An inconsistency between these two quantities would instead point either towards additional physics in the dark sector, or towards a non-standard cosmology, with a thermal history substantially different from that of the standard cosmological model.



قيم البحث

اقرأ أيضاً

106 - Mathias Pierre 2019
One of the most puzzling problems of modern physics is the identification of the nature a non-relativistic matter component present in the universe, contributing to more than 25$%$ of the total energy budget, known as Dark Matter. Weakly Interacting Massive Particles (WIMPs) are among the best motivated dark matter candidates. However, in light of non conclusive detection signals and strong constraints from collider, direct and indirect detection experiments, this thesis presents constraints on several realizations of the WIMP paradigm in the context of simplified dark matter models. More elaborated models considering extended gauge structures are discussed further on, such as constructions involving generalized Chern-Simons couplings and a specific WIMP scenario motivated by recently observed flavour anomalies related to the $R_{K^{(*)}}$ observable. The second part of this thesis is devoted to the discussion of an alternative dark matter thermal production mechanism where an explicit realization of the Strongly Interacting Massive Particles (SIMPs) paradigm is discussed in the context of a non-Abelian hidden gauge structure. In a last part, the possibility of producing non-thermally a dark matter component via the freeze-in mechanism was investigated and the strong impact of the post-inflationary reaheating stage of the universe on such constructions illustrated by the specific case where dark matter density production is mediated by a heavy spin-2 field in addition to the standard graviton.
A weakly interacting massive particle (WIMP) is a leading candidate of the dark matter. The WIMP dark matter abundance is determined by the freeze-out mechanism. Once we know the property of the WIMP particle such as the mass and interaction, we can predict the dark matter abundance. There are, however, several uncertainties in the estimation of the WIMP dark matter abundance. In this work, we focus on the effect from Standard Model thermodynamics. We revisit the estimation of the WIMP dark matter abundance and its uncertainty due to the equation of state (EOS) in the Standard Model. We adopt the up-to-date estimate of the EOS of the Standard Model in the early Universe and find nearly 10% difference in the 1-1000 GeV dark matter abundance, compared to the conventional estimate of the EOS.
Weakly interacting massive particles (WIMPs) are one of the leading candidates for Dark Matter. So far we can use direct Dark Matter detection to estimate the mass of halo WIMPs only by fitting predicted recoil spectra to future experimental data. He re we develop a model-independent method for determining the WIMP mass by using experimental data directly. This method is independent of the as yet unknown WIMP density near the Earth as well as of the WIMP-nuclear cross section and can be used to extract information about WIMP mass with O(50) events.
195 - Kenichi Saikawa 2017
The axion arises in well-motivated extensions of the Standard Model of particle physics and is regarded as an alternative to the weakly interacting massive particle paradigm to explain the nature of dark matter. In this contribution, we review theore tical aspects of dark matter axions, particularly focusing on recent developments in the estimation of their relic abundance. A closer look at their non-thermal production mechanisms in the early universe reveals the possibility of explaining the observed dark matter abundance in various mass ranges. The mass ranges predicted in various cosmological scenarios are briefly summarized.
149 - Yanou Cui , Michael Shamma 2020
We propose a new mechanism where asymmetric dark matter (ADM) and the baryon asymmetry are both generated in the same decay chain of a metastable weakly interacting massive particle (WIMP) after its thermal freeze-out. Dark matter and baryons are con nected by a generalized baryon number that is conserved, while the DM asymmetry and baryon asymmetry compensate each other. This unified framework addresses the DM-baryon coincidence while inheriting the merit of the conventional WIMP miracle in predicting relic abundances of matter. Examples of renormalizable models realizing this scenario are presented. These models generically predict ADM with sub-GeV to GeV-scale mass that interacts with Standard Model quarks or leptons, thus rendering potential signatures at direct detection experiments sensitive to low mass DM. Other interesting phenomenological predictions are also discussed, including: LHC signatures of new intermediate particles with color or electroweak charge and DM induced nucleon decay; the long-lived WIMP may be within reach of future high energy collider experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا