ترغب بنشر مسار تعليمي؟ اضغط هنا

WIMP Cogenesis for Asymmetric Dark Matter and the Baryon Asymmetry

150   0   0.0 ( 0 )
 نشر من قبل Michael Shamma
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new mechanism where asymmetric dark matter (ADM) and the baryon asymmetry are both generated in the same decay chain of a metastable weakly interacting massive particle (WIMP) after its thermal freeze-out. Dark matter and baryons are connected by a generalized baryon number that is conserved, while the DM asymmetry and baryon asymmetry compensate each other. This unified framework addresses the DM-baryon coincidence while inheriting the merit of the conventional WIMP miracle in predicting relic abundances of matter. Examples of renormalizable models realizing this scenario are presented. These models generically predict ADM with sub-GeV to GeV-scale mass that interacts with Standard Model quarks or leptons, thus rendering potential signatures at direct detection experiments sensitive to low mass DM. Other interesting phenomenological predictions are also discussed, including: LHC signatures of new intermediate particles with color or electroweak charge and DM induced nucleon decay; the long-lived WIMP may be within reach of future high energy collider experiments.



قيم البحث

اقرأ أيضاً

We investigate the dark matter and the cosmological baryon asymmetry in a simple theory where baryon (B) and lepton (L) number are local gauge symmetries that are spontaneously broken. In this model, the cold dark matter candidate is the lightest new field with baryon number and its stability is an automatic consequence of the gauge symmetry. Dark matter annihilation is either through a leptophobic gauge boson whose mass must be below a TeV or through the Higgs boson. Since the mass of the leptophobic gauge boson has to be below the TeV scale one finds that in the first scenario there is a lower bound on the elastic cross section of about 5x10^{-46} cm^2. Even though baryon number is gauged and not spontaneously broken until the weak scale, a cosmologically acceptable baryon excess is possible. There is tension between achieving both the measured baryon excess and the dark matter density.
We investigate the Q-ball decay in the gauge-mediated SUSY breaking. Q balls decay mainly into nucleons, and partially into gravitinos, while they are kinematically forbidden to decay into sparticles which would be cosmologically harmful. This is ach ieved by the Q-ball charge small enough to be unstable for the decay, and large enough to be protected kinematically from unwanted decay channel. We can then have right amounts of the baryon asymmetry and the dark matter of the universe, evading any astrophysical and cosmological observational constraints such as the big bang nucleosynthesis, which has not been treated properly in the literatures.
We reinvestigate the scenario that the amount of the baryons and the gravitino dark matter is naturally explained by the decay of the Q balls in the gauge-mediated SUSY breaking. Equipped by the more correct decay rates into gravitinos and baryons re cently derived, we find that the scenario with the direct production of the gravitino dark matter from the Q-ball decay works naturally.
We investigate the Q-ball decay into the axino dark matter in the gauge-mediated supersymmetry breaking. In our scenario, the Q ball decays mainly into nucleons and partially into axinos to account for the baryon asymmetry and the dark matter of the universe simultaneously. The Q ball decays well before the big bang nucleosynthesis so that it is not affected by the decay. The decay into the supersymmetric particles of the minimal supersymmetric standard model is kinematically prohibited until the very end of the decay, and we could safely make their abundances small enough for the successful big bang nucleosynthesis. We show the regions of axino model parameters and the Q-ball parameters which realize this scenario.
78 - Yu Hamada , Ryuichiro Kitano , 2021
We propose a scenario that the Electroweak-Skyrmion, a solitonic object made of the Higgs field and the electroweak gauge fields, is identified as an asymmetric dark matter. In this scenario, the relic abundance of the dark matter is related to the b aryon asymmetry of the Universe through a sphaleron-like process. We show that the observed ratio of dark matter abundance to the baryon asymmetry can be explained by this scenario with an appropriate choice of model parameters that is allowed by currently available experimental constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا