ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-driven localization mappings in filtering the monsoon-Hadley multicloud convective flows

77   0   0.0 ( 0 )
 نشر من قبل John Harlim
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper demonstrates the efficacy of data-driven localization mappings for assimilating satellite-like observations in a dynamical system of intermediate complexity. In particular, a sparse network of synthetic brightness temperature measurements is simulated using an idealized radiative transfer model and assimilated to the monsoon-Hadley multicloud model, a nonlinear stochastic model containing several thousands of model coordinates. A serial ensemble Kalman filter is implemented in which the empirical correlation statistics are improved using localization maps obtained from a supervised learning algorithm. The impact of the localization mappings is assessed in perfect model observing system simulation experiments (OSSEs) as well as in the presence of model errors resulting from the misspecification of key convective closure parameters. In perfect model OSSEs, the localization mappings that use adjacent correlations to improve the correlation estimated from small ensemble sizes produce robust accurate analysis estimates. In the presence of model error, the filter skills of the localization maps trained on perfect and imperfect model data are comparable.



قيم البحث

اقرأ أيضاً

Observations of tropical convection from precipitation radar and the concurring large-scale atmospheric state at two locations (Darwin and Kwajalein) are used to establish effective stochastic models to parameterise subgrid-scale tropical convective activity. Two approaches are presented which rely on the assumption that tropical convection induces a stationary equilibrium distribution. In the first approach we parameterise convection variables such as convective area fraction as an instantaneous random realisation conditioned on the large-scale vertical velocities according to a probability density function estimated from the observations. In the second approach convection variables are generated in a Markov process conditioned on the large-scale vertical velocity, allowing for non-trivial temporal correlations. Despite the different prevalent atmospheric and oceanic regimes at the two locations, with Kwajalein being exposed to a purely oceanic weather regime and Darwin exhibiting land-sea interaction, we establish that the empirical measure for the convective variables conditioned on large-scale mid-level vertical velocities for the two locations are close. This allows us to train the stochastic models at one location and then generate time series of convective activity at the other location. The proposed stochastic subgrid-scale models adequately reproduce the statistics of the observed convective variables and we discuss how they may be used in future scale-independent mass-flux convection parameterisations.
We present data driven kinematic models for the motion of bubbles in high-Re turbulent fluid flows based on recurrent neural networks with long-short term memory enhancements. The models extend empirical relations, such as Maxey-Riley (MR) and its va riants, whose applicability is limited when either the bubble size is large or the flow is very complex. The recurrent neural networks are trained on the trajectories of bubbles obtained by Direct Numerical Simulations (DNS) of the Navier Stokes equations for a two-component incompressible flow model. Long short term memory components exploit the time history of the flow field that the bubbles have encountered along their trajectories and the networks are further augmented by imposing rotational invariance to their structure. We first train and validate the formulated model using DNS data for a turbulent Taylor-Green vortex. Then we examine the model predictive capabilities and its generalization to Reynolds numbers that are different from those of the training data on benchmark problems, including a steady (Hills spherical vortex) and an unsteady (Gaussian vortex ring) flow field. We find that the predictions of the developed model are significantly improved compared with those obtained by the MR equation. Our results indicate that data-driven models with history terms are well suited in capturing the trajectories of bubbles in turbulent flows.
97 - M. Cheng , F. Fang , C.C. Pain 2020
Deep learning techniques for improving fluid flow modelling have gained significant attention in recent years. Advanced deep learning techniques achieve great progress in rapidly predicting fluid flows without prior knowledge of the underlying physic al relationships. Advanced deep learning techniques achieve great progress in rapidly predicting fluid flows without prior knowledge of the underlying physical relationships. However, most of existing researches focused mainly on either sequence learning or spatial learning, rarely on both spatial and temporal dynamics of fluid flows (Reichstein et al., 2019). In this work, an Artificial Intelligence (AI) fluid model based on a general deep convolutional generative adversarial network (DCGAN) has been developed for predicting spatio-temporal flow distributions. In deep convolutional networks, the high-dimensional flows can be converted into the low-dimensional latent representations. The complex features of flow dynamics can be captured by the adversarial networks. The above DCGAN fluid model enables us to provide reasonable predictive accuracy of flow fields while maintaining a high computational efficiency. The performance of the DCGAN is illustrated for two test cases of Hokkaido tsunami with different incoming waves along the coastal line. It is demonstrated that the results from the DCGAN are comparable with those from the original high fidelity model (Fluidity). The spatio-temporal flow features have been represented as the flow evolves, especially, the wave phases and flow peaks can be captured accurately. In addition, the results illustrate that the online CPU cost is reduced by five orders of magnitude compared to the original high fidelity model simulations. The promising results show that the DCGAN can provide rapid and reliable spatio-temporal prediction for nonlinear fluid flows.
Skilful prediction of the seasonal Indian summer monsoon (ISM) rainfall (ISMR) at least one season in advance has great socio-economic value. It represents a lifeline for about a sixth of the worlds population. The ISMR prediction remained a challeng ing problem with the sub-critical skills of the dynamical models attributable to limited understanding of the interaction among clouds, convection, and circulation. The variability of cloud hydrometeors (cloud ice and cloud water) in different time scales (3-7 days, 10-20 days and 30-60 days bands) are examined from re-analysis data during Indian summer monsoon (ISM). Here, we also show that the internal variability of cloud hydrometeors (particularly cloud ice) associated with the ISM sub-seasonal (synoptic + intra-seasonal) fluctuations is partly predictable as they are found to be tied with slowly varying forcing (e.g., El Ni~no and Southern Oscillation). The representation of deep convective clouds, which involve ice phase processes in a coupled climate model, strongly modulates ISMR variability in association with global predictors. The results from the two sensitivity simulations using coupled global climate model (CGCM) are provided to demonstrate the importance of the cloud hydrometeors on ISM rainfall predictability. Therefore, this study provides a scientific basis for improving the simulation of the seasonal ISMR by improving the physical processes of the cloud on a sub-seasonal time scale and motivating further research in this direction.
We study the relationship between the El Ni~no--Southern Oscillation (ENSO) and the Indian summer monsoon in ensemble simulations from state-of-the-art climate models, the Max Planck Institute Earth System Model (MPI-ESM) and the Community Earth Syst em Model (CESM). We consider two simple variables: the Tahiti--Darwin sea-level pressure difference and the Northern Indian precipitation. We utilize ensembles converged to the systems snapshot attractor for analyzing possible changes (i) in the teleconnection between the fluctuations of the two variables, and (ii) in their climatic means. (i) With very high confidence, we detect an increase in the strength of the teleconnection, as a response to the forcing, in the MPI-ESM under historical forcing between 1890 and 2005, concentrated to the end of this period. We explain that our finding does not contradict instrumental observations, since their existing analyses regarding the nonstationarity of the teleconnection are either methodologically unreliable, or consider an ill-defined teleconnection concept. In the MPI-ESM we cannot reject stationarity between 2006 and 2099 under the Representative Concentration Pathway 8.5 (RCP8.5), and in a 110-year-long 1-percent pure CO2 scenario; neither can we in the CESM between 1960 and 2100 with historical forcing and RCP8.5. (ii) In the latter ensembles, the climatic mean is strongly displaced in the phase space projection spanned by the two variables. This displacement is nevertheless linear. However, the slope exhibits a strong seasonality, falsifying a hypothesis of a universal, emergent relationship between these two climatic means, excluding applicability in an emergent constraint.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا