ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-driven modelling of nonlinear spatio-temporal fluid flows using a deep convolutional generative adversarial network

98   0   0.0 ( 0 )
 نشر من قبل Fangxin Fang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep learning techniques for improving fluid flow modelling have gained significant attention in recent years. Advanced deep learning techniques achieve great progress in rapidly predicting fluid flows without prior knowledge of the underlying physical relationships. Advanced deep learning techniques achieve great progress in rapidly predicting fluid flows without prior knowledge of the underlying physical relationships. However, most of existing researches focused mainly on either sequence learning or spatial learning, rarely on both spatial and temporal dynamics of fluid flows (Reichstein et al., 2019). In this work, an Artificial Intelligence (AI) fluid model based on a general deep convolutional generative adversarial network (DCGAN) has been developed for predicting spatio-temporal flow distributions. In deep convolutional networks, the high-dimensional flows can be converted into the low-dimensional latent representations. The complex features of flow dynamics can be captured by the adversarial networks. The above DCGAN fluid model enables us to provide reasonable predictive accuracy of flow fields while maintaining a high computational efficiency. The performance of the DCGAN is illustrated for two test cases of Hokkaido tsunami with different incoming waves along the coastal line. It is demonstrated that the results from the DCGAN are comparable with those from the original high fidelity model (Fluidity). The spatio-temporal flow features have been represented as the flow evolves, especially, the wave phases and flow peaks can be captured accurately. In addition, the results illustrate that the online CPU cost is reduced by five orders of magnitude compared to the original high fidelity model simulations. The promising results show that the DCGAN can provide rapid and reliable spatio-temporal prediction for nonlinear fluid flows.



قيم البحث

اقرأ أيضاً

Identifying novel functional protein structures is at the heart of molecular engineering and molecular biology, requiring an often computationally exhaustive search. We introduce the use of a Deep Convolutional Generative Adversarial Network (DCGAN) to classify protein structures based on their functionality by encoding each sample in a grid object structure using three features in each object: the generic atom type, the position atom type, and its occupancy relative to a given atom. We train DCGAN on 3-dimensional (3D) decoy and native protein structures in order to generate and discriminate 3D protein structures. At the end of our training, loss converges to a local minimum and our DCGAN can annotate functional proteins robustly against adversarial protein samples. In the future we hope to extend the novel structures we found from the generator in our DCGAN with more samples to explore more granular functionality with varying functions. We hope that our effort will advance the field of protein structure prediction.
This paper presents a topology optimization approach for surface flows, which can represent the viscous and incompressible fluidic motions at the solid/liquid and liquid/vapor interfaces. The fluidic motions on such material interfaces can be describ ed by the surface Navier-Stokes equations defined on 2-manifolds or two-dimensional manifolds, where the elementary tangential calculus is implemented in terms of exterior differential operators expressed in a Cartesian system. Based on the topology optimization model for fluidic flows with porous medium filling the design domain, an artificial Darcy friction is added to the area force term of the surface Navier-Stokes equations and the physical area forces are penalized to eliminate their existence in the fluidic regions and to avoid the invalidity of the porous medium model. Topology optimization for steady and unsteady surface flows can be implemented by iteratively evolving the impermeability of the porous medium on the 2-manifolds, where the impermeability is interpolated by the material density derived from a design variable. The related partial differential equations are solved by using the surface finite element method. Numerical examples have been provided to demonstrate this topology optimization approach for surface flows, including the boundary velocity driven flows, area force driven flows and convection-diffusion flows.
105 - M. Cheng , F.Fang , C.C. Pain 2020
Considering the high computation cost produced in conventional computation fluid dynamic simulations, machine learning methods have been introduced to flow dynamic simulations in recent years. However, most of studies focus mainly on existing fluid f ields learning, the prediction of spatio-temporal nonlinear fluid flows in varying parameterized space has been neglected. In this work, we propose a hybrid deep adversarial autoencoder (DAA) to integrate generative adversarial network (GAN) and variational autoencoder (VAE) for predicting parameterized nonlinear fluid flows in spatial and temporal space. High-dimensional inputs are compressed into the low-representation representations by nonlinear functions in a convolutional encoder. In this way, the predictive fluid flows reconstructed in a convolutional decoder contain the dynamic flow physics of high nonlinearity and chaotic nature. In addition, the low-representation representations are applied into the adversarial network for model training and parameter optimization, which enables a fast computation process. The capability of the hybrid DAA is demonstrated by varying inputs on a water collapse example. Numerical results show that this hybrid DAA has successfully captured the spatio-temporal flow features with CPU speed-up of three orders of magnitude. Promising results suggests that the hybrid DAA can play a critical role in efficiently and accurately predicting complex flows in future.
In this paper, in order to further deal with the performance degradation caused by ignoring the phase information in conventional speech enhancement systems, we proposed a temporal dilated convolutional generative adversarial network (TDCGAN) in the end-to-end based speech enhancement architecture. For the first time, we introduced the temporal dilated convolutional network with depthwise separable convolutions into the GAN structure so that the receptive field can be greatly increased without increasing the number of parameters. We also first explored the effect of signal-to-noise ratio (SNR) penalty item as regularization of the loss function of generator on improving the SNR of enhanced speech. The experimental results demonstrated that our proposed method outperformed the state-of-the-art end-to-end GAN-based speech enhancement. Moreover, compared with previous GAN-based methods, the proposed TDCGAN could greatly decreased the number of parameters. As expected, the work also demonstrated that the SNR penalty item as regularization was more effective than $L1$ on improving the SNR of enhanced speech.
Modeling geophysical processes as low-dimensional dynamical systems and regressing their vector field from data is a promising approach for learning emulators of such systems. We show that when the kernel of these emulators is also learned from data (using kernel flows, a variant of cross-validation), then the resulting data-driven models are not only faster than equation-based models but are easier to train than neural networks such as the long short-term memory neural network. In addition, they are also more accurate and predictive than the latter. When trained on geophysical observational data, for example, the weekly averaged global sea-surface temperature, considerable gains are also observed by the proposed technique in comparison to classical partial differential equation-based models in terms of forecast computational cost and accuracy. When trained on publicly available re-analysis data for the daily temperature of the North-American continent, we see significant improvements over classical baselines such as climatology and persistence-based forecast techniques. Although our experiments concern specific examples, the proposed approach is general, and our results support the viability of kernel methods (with learned kernels) for interpretable and computationally efficient geophysical forecasting for a large diversity of processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا