ترغب بنشر مسار تعليمي؟ اضغط هنا

Controllable Top-down Feature Transformer

64   0   0.0 ( 0 )
 نشر من قبل Zhiwei Jia
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the intrinsic transformation of feature maps across convolutional network layers with explicit top-down control. To this end, we develop top-down feature transformer (TFT), under controllable parameters, that are able to account for the hidden layer transformation while maintaining the overall consistency across layers. The learned generators capture the underlying feature transformation processes that are independent of particular training images. Our proposed TFT framework brings insights to and helps the understanding of, an important problem of studying the CNN internal feature representation and transformation under the top-down processes. In the case of spatial transformations, we demonstrate the significant advantage of TFT over existing data-driven approaches in building data-independent transformations. We also show that it can be adopted in other applications such as data augmentation and image style transfer.



قيم البحث

اقرأ أيضاً

Blind face inpainting refers to the task of reconstructing visual contents without explicitly indicating the corrupted regions in a face image. Inherently, this task faces two challenges: (1) how to detect various mask patterns of different shapes an d contents; (2) how to restore visually plausible and pleasing contents in the masked regions. In this paper, we propose a novel two-stage blind face inpainting method named Frequency-guided Transformer and Top-Down Refinement Network (FT-TDR) to tackle these challenges. Specifically, we first use a transformer-based network to detect the corrupted regions to be inpainted as masks by modeling the relation among different patches. We also exploit the frequency modality as complementary information for improved detection results and capture the local contextual incoherence to enhance boundary consistency. Then a top-down refinement network is proposed to hierarchically restore features at different levels and generate contents that are semantically consistent with the unmasked face regions. Extensive experiments demonstrate that our method outperforms current state-of-the-art blind and non-blind face inpainting methods qualitatively and quantitatively.
Most existing Siamese-based tracking methods execute the classification and regression of the target object based on the similarity maps. However, they either employ a single map from the last convolutional layer which degrades the localization accur acy in complex scenarios or separately use multiple maps for decision making, introducing intractable computations for aerial mobile platforms. Thus, in this work, we propose an efficient and effective hierarchical feature transformer (HiFT) for aerial tracking. Hierarchical similarity maps generated by multi-level convolutional layers are fed into the feature transformer to achieve the interactive fusion of spatial (shallow layers) and semantics cues (deep layers). Consequently, not only the global contextual information can be raised, facilitating the target search, but also our end-to-end architecture with the transformer can efficiently learn the interdependencies among multi-level features, thereby discovering a tracking-tailored feature space with strong discriminability. Comprehensive evaluations on four aerial benchmarks have proven the effectiveness of HiFT. Real-world tests on the aerial platform have strongly validated its practicability with a real-time speed. Our code is available at https://github.com/vision4robotics/HiFT.
Deep learning methods have witnessed the great progress in image restoration with specific metrics (e.g., PSNR, SSIM). However, the perceptual quality of the restored image is relatively subjective, and it is necessary for users to control the recons truction result according to personal preferences or image characteristics, which cannot be done using existing deterministic networks. This motivates us to exquisitely design a unified interactive framework for general image restoration tasks. Under this framework, users can control continuous transition of different objectives, e.g., the perception-distortion trade-off of image super-resolution, the trade-off between noise reduction and detail preservation. We achieve this goal by controlling the latent features of the designed network. To be specific, our proposed framework, named Controllable Feature Space Network (CFSNet), is entangled by two branches based on different objectives. Our framework can adaptively learn the coupling coefficients of different layers and channels, which provides finer control of the restored image quality. Experiments on several typical image restoration tasks fully validate the effective benefits of the proposed method. Code is available at https://github.com/qibao77/CFSNet.
One-stage object detectors such as SSD or YOLO already have shown promising accuracy with small memory footprint and fast speed. However, it is widely recognized that one-stage detectors have difficulty in detecting small objects while they are compe titive with two-stage methods on large objects. In this paper, we investigate how to alleviate this problem starting from the SSD framework. Due to their pyramidal design, the lower layer that is responsible for small objects lacks strong semantics(e.g contextual information). We address this problem by introducing a feature combining module that spreads out the strong semantics in a top-down manner. Our final model StairNet detector unifies the multi-scale representations and semantic distribution effectively. Experiments on PASCAL VOC 2007 and PASCAL VOC 2012 datasets demonstrate that StairNet significantly improves the weakness of SSD and outperforms the other state-of-the-art one-stage detectors.
We consider the task of learning a classifier for semantic segmentation using weak supervision in the form of image labels which specify the object classes present in the image. Our method uses deep convolutional neural networks (CNNs) and adopts an Expectation-Maximization (EM) based approach. We focus on the following three aspects of EM: (i) initialization; (ii) latent posterior estimation (E-step) and (iii) the parameter update (M-step). We show that saliency and attention maps, our bottom-up and top-down cues respectively, of simple images provide very good cues to learn an initialization for the EM-based algorithm. Intuitively, we show that before trying to learn to segment complex images, it is much easier and highly effective to first learn to segment a set of simple images and then move towards the complex ones. Next, in order to update the parameters, we propose minimizing the combination of the standard softmax loss and the KL divergence between the true latent posterior and the likelihood given by the CNN. We argue that this combination is more robust to wrong predictions made by the expectation step of the EM method. We support this argument with empirical and visual results. Extensive experiments and discussions show that: (i) our method is very simple and intuitive; (ii) requires only image-level labels; and (iii) consistently outperforms other weakly-supervised state-of-the-art methods with a very high margin on the PASCAL VOC 2012 dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا