ﻻ يوجد ملخص باللغة العربية
We study the intrinsic transformation of feature maps across convolutional network layers with explicit top-down control. To this end, we develop top-down feature transformer (TFT), under controllable parameters, that are able to account for the hidden layer transformation while maintaining the overall consistency across layers. The learned generators capture the underlying feature transformation processes that are independent of particular training images. Our proposed TFT framework brings insights to and helps the understanding of, an important problem of studying the CNN internal feature representation and transformation under the top-down processes. In the case of spatial transformations, we demonstrate the significant advantage of TFT over existing data-driven approaches in building data-independent transformations. We also show that it can be adopted in other applications such as data augmentation and image style transfer.
Blind face inpainting refers to the task of reconstructing visual contents without explicitly indicating the corrupted regions in a face image. Inherently, this task faces two challenges: (1) how to detect various mask patterns of different shapes an
Most existing Siamese-based tracking methods execute the classification and regression of the target object based on the similarity maps. However, they either employ a single map from the last convolutional layer which degrades the localization accur
Deep learning methods have witnessed the great progress in image restoration with specific metrics (e.g., PSNR, SSIM). However, the perceptual quality of the restored image is relatively subjective, and it is necessary for users to control the recons
One-stage object detectors such as SSD or YOLO already have shown promising accuracy with small memory footprint and fast speed. However, it is widely recognized that one-stage detectors have difficulty in detecting small objects while they are compe
We consider the task of learning a classifier for semantic segmentation using weak supervision in the form of image labels which specify the object classes present in the image. Our method uses deep convolutional neural networks (CNNs) and adopts an