ﻻ يوجد ملخص باللغة العربية
Blind face inpainting refers to the task of reconstructing visual contents without explicitly indicating the corrupted regions in a face image. Inherently, this task faces two challenges: (1) how to detect various mask patterns of different shapes and contents; (2) how to restore visually plausible and pleasing contents in the masked regions. In this paper, we propose a novel two-stage blind face inpainting method named Frequency-guided Transformer and Top-Down Refinement Network (FT-TDR) to tackle these challenges. Specifically, we first use a transformer-based network to detect the corrupted regions to be inpainted as masks by modeling the relation among different patches. We also exploit the frequency modality as complementary information for improved detection results and capture the local contextual incoherence to enhance boundary consistency. Then a top-down refinement network is proposed to hierarchically restore features at different levels and generate contents that are semantically consistent with the unmasked face regions. Extensive experiments demonstrate that our method outperforms current state-of-the-art blind and non-blind face inpainting methods qualitatively and quantitatively.
We study the intrinsic transformation of feature maps across convolutional network layers with explicit top-down control. To this end, we develop top-down feature transformer (TFT), under controllable parameters, that are able to account for the hidd
Recovering badly damaged face images is a useful yet challenging task, especially in extreme cases where the masked or damaged region is very large. One of the major challenges is the ability of the system to generalize on faces outside the training
We propose Mask Guided (MG) Matting, a robust matting framework that takes a general coarse mask as guidance. MG Matting leverages a network (PRN) design which encourages the matting model to provide self-guidance to progressively refine the uncertai
Blind face restoration (BFR) from severely degraded face images in the wild is a very challenging problem. Due to the high illness of the problem and the complex unknown degradation, directly training a deep neural network (DNN) usually cannot lead t
In this paper, we aim to develop an efficient and compact deep network for RGB-D salient object detection, where the depth image provides complementary information to boost performance in complex scenarios. Starting from a coarse initial prediction b