ترغب بنشر مسار تعليمي؟ اضغط هنا

FT-TDR: Frequency-guided Transformer and Top-Down Refinement Network for Blind Face Inpainting

157   0   0.0 ( 0 )
 نشر من قبل Junke Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Blind face inpainting refers to the task of reconstructing visual contents without explicitly indicating the corrupted regions in a face image. Inherently, this task faces two challenges: (1) how to detect various mask patterns of different shapes and contents; (2) how to restore visually plausible and pleasing contents in the masked regions. In this paper, we propose a novel two-stage blind face inpainting method named Frequency-guided Transformer and Top-Down Refinement Network (FT-TDR) to tackle these challenges. Specifically, we first use a transformer-based network to detect the corrupted regions to be inpainted as masks by modeling the relation among different patches. We also exploit the frequency modality as complementary information for improved detection results and capture the local contextual incoherence to enhance boundary consistency. Then a top-down refinement network is proposed to hierarchically restore features at different levels and generate contents that are semantically consistent with the unmasked face regions. Extensive experiments demonstrate that our method outperforms current state-of-the-art blind and non-blind face inpainting methods qualitatively and quantitatively.



قيم البحث

اقرأ أيضاً

We study the intrinsic transformation of feature maps across convolutional network layers with explicit top-down control. To this end, we develop top-down feature transformer (TFT), under controllable parameters, that are able to account for the hidd en layer transformation while maintaining the overall consistency across layers. The learned generators capture the underlying feature transformation processes that are independent of particular training images. Our proposed TFT framework brings insights to and helps the understanding of, an important problem of studying the CNN internal feature representation and transformation under the top-down processes. In the case of spatial transformations, we demonstrate the significant advantage of TFT over existing data-driven approaches in building data-independent transformations. We also show that it can be adopted in other applications such as data augmentation and image style transfer.
Recovering badly damaged face images is a useful yet challenging task, especially in extreme cases where the masked or damaged region is very large. One of the major challenges is the ability of the system to generalize on faces outside the training dataset. We propose to tackle this extreme inpainting task with a conditional Generative Adversarial Network (GAN) that utilizes structural information, such as edges, as a prior condition. Edge information can be obtained from the partially masked image and a structurally similar image or a hand drawing. In our proposed conditional GAN, we pass the conditional input in every layer of the encoder while maintaining consistency in the distributions between the learned weights and the incoming conditional input. We demonstrate the effectiveness of our method with badly damaged face examples.
We propose Mask Guided (MG) Matting, a robust matting framework that takes a general coarse mask as guidance. MG Matting leverages a network (PRN) design which encourages the matting model to provide self-guidance to progressively refine the uncertai n regions through the decoding process. A series of guidance mask perturbation operations are also introduced in the training to further enhance its robustness to external guidance. We show that PRN can generalize to unseen types of guidance masks such as trimap and low-quality alpha matte, making it suitable for various application pipelines. In addition, we revisit the foreground color prediction problem for matting and propose a surprisingly simple improvement to address the dataset issue. Evaluation on real and synthetic benchmarks shows that MG Matting achieves state-of-the-art performance using various types of guidance inputs. Code and models are available at https://github.com/yucornetto/MGMatting.
215 - Tao Yang 2021
Blind face restoration (BFR) from severely degraded face images in the wild is a very challenging problem. Due to the high illness of the problem and the complex unknown degradation, directly training a deep neural network (DNN) usually cannot lead t o acceptable results. Existing generative adversarial network (GAN) based methods can produce better results but tend to generate over-smoothed restorations. In this work, we propose a new method by first learning a GAN for high-quality face image generation and embedding it into a U-shaped DNN as a prior decoder, then fine-tuning the GAN prior embedded DNN with a set of synthesized low-quality face images. The GAN blocks are designed to ensure that the latent code and noise input to the GAN can be respectively generated from the deep and shallow features of the DNN, controlling the global face structure, local face details and background of the reconstructed image. The proposed GAN prior embedded network (GPEN) is easy-to-implement, and it can generate visually photo-realistic results. Our experiments demonstrated that the proposed GPEN achieves significantly superior results to state-of-the-art BFR methods both quantitatively and qualitatively, especially for the restoration of severely degraded face images in the wild. The source code and models can be found at https://github.com/yangxy/GPEN.
116 - Shuhan Chen , Yun Fu 2020
In this paper, we aim to develop an efficient and compact deep network for RGB-D salient object detection, where the depth image provides complementary information to boost performance in complex scenarios. Starting from a coarse initial prediction b y a multi-scale residual block, we propose a progressively guided alternate refinement network to refine it. Instead of using ImageNet pre-trained backbone network, we first construct a lightweight depth stream by learning from scratch, which can extract complementary features more efficiently with less redundancy. Then, different from the existing fusion based methods, RGB and depth features are fed into proposed guided residual (GR) blocks alternately to reduce their mutual degradation. By assigning progressive guidance in the stacked GR blocks within each side-output, the false detection and missing parts can be well remedied. Extensive experiments on seven benchmark datasets demonstrate that our model outperforms existing state-of-the-art approaches by a large margin, and also shows superiority in efficiency (71 FPS) and model size (64.9 MB).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا