ترغب بنشر مسار تعليمي؟ اضغط هنا

Using the CIFIST grid of CO5BOLD 3D model atmospheres to study the effects of stellar granulation on photometric colours. I. Grids of 3D corrections in the UBVRI, 2MASS, Hipparcos, Gaia, and SDSS systems

52   0   0.0 ( 0 )
 نشر من قبل Piercarlo Bonifacio
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The atmospheres of cool stars are temporally and spatially inhomogeneous due to the effects of convection.The influence of this inhomogeneity, referred to as granulation, on colours has never been investigated over a large range of effective temperatures and gravities. We aim to study, in a quantitative way, the impact of granulation on colours. We use the CIFIST grid of CO5BOLD hydrodynamical models to compute emerging fluxes. These in turn are used to compute theoretical colours in the UBVRI,2MASS,Hipparcos,Gaia and SDSS systems. Every CO5BOLD model has a corresponding one dimensional (1D) plane-parallel LHD model computed for the same atmospheric parameters, which we used to define a 3D correction that can be applied to colours computed from fluxes computed from any 1D model atmosphere code. The 3D corrections on colours are generally small, of the order of a few hundredths of a magnitude, yet they are far from negligible. We find that ignoring granulation effects can lead to underestimation of Teff by up to 200K and overestimation of gravity by up to 0.5dex, when using colours as diagnostics. We have identified a major shortcoming in how scattering is treated in the current version of the CIFIST grid, which could lead to offsets of the order 0.01mag, especially for colours involving blue and UV bands.We have investigated the Gaia and Hipparcos photometric systems and found that the (G-H_p),(BP-RP) diagram is immune to the effects of granulation. In addition, we point to the potential of the RVS photometry as a metallicity diagnostic. Our investigation shows that the effects of granulation should not be neglected if one wants to use colours as diagnostics of the stellar parameters of F,G,K stars. A limitation is that scattering is treated as true absorption in our current computations, thus our 3D corrections are likely an upper limit to the true effect. (Abridged)



قيم البحث

اقرأ أيضاً

We present an overview of the current status of our efforts to derive the microturbulence and macroturbulence parameters (ximic and ximac) from the CIFIST grid of CO5BOLD 3D model atmospheres as a function of the basic stellar parameters Teff, log g, and [M/H]. The latest results for the Sun and Procyon show that the derived microturbulence parameter depends significantly on the numerical resolution of the underlying 3D simulation, confirming that `low-resolution models tend to underestimate the true value of ximic. Extending the investigation to twelve further simulations with different Teff, log g, and [M/H], we obtain a first impression of the predicted trend of ximic over the Hertzsprung-Russell diagram: in agreement with empirical evidence, microturbulence increases towards higher effective temperature and lower gravity. The metallicity dependence of ximic must be interpreted with care, since it also reflects the deviation between the 1D and 3D photospheric temperature stratifications that increases systematically towards lower metallicity.
156 - Z. Magic , R. Collet , M. Asplund 2013
We present the Stagger-grid, a comprehensive grid of time-dependent, 3D hydrodynamic model atmospheres for late-type stars with realistic treatment of radiative transfer, covering a wide range in stellar parameters. This grid of 3D models is intended for various applications like stellar spectroscopy, asteroseismology and the study of stellar convection. In this introductory paper, we describe the methods used for the computation of the grid and discuss the general properties of the 3D models as well as their temporal and spatial averages (<3D>). All our models were generated with the Stagger-code, using realistic input physics for the equation of state (EOS) and for continuous and line opacities. Our ~220 grid models range in Teff from 4000 to 7000K in steps of 500K, in log g from 1.5 to 5.0 in steps of 0.5 dex, and [Fe/H] from -4.0 to +0.5 in steps of 0.5 and 1.0 dex. We find a tight scaling relation between the vertical velocity and the surface entropy jump, which itself correlates with the constant entropy value of the adiabatic convection zone. The range in intensity contrast is enhanced at lower metallicity. The granule size correlates closely with the pressure scale height sampled at the depth of maximum velocity. We compare the <3D> models with widely applied 1D models, as well as with theoretical 1D hydrostatic models generated with the same EOS and opacity tables as the 3D models, in order to isolate the effects of using self-consistent and hydrodynamic modeling of convection, rather than the classical mixing length theory approach. For the first time, we are able to quantify systematically over a broad range of stellar parameters the uncertainties of 1D models arising from the simplified treatment of physics, in particular convective energy transport. In agreement with previous findings, we find that the differences can be significant, especially for metal-poor stars.
We analyse the effect on adiabatic stellar oscillation frequencies of replacing the near-surface layers in 1D stellar structure models with averaged 3D stellar surface convection simulations. The main difference is an expansion of the atmosphere by 3 D convection, expected to explain a major part of the asteroseismic surface effect; a systematic overestimation of p-mode frequencies due to inadequate surface physics. We employ pairs of 1D stellar envelope models and 3D simulations from a previous calibration of the mixing-length parameter, alpha. That calibration constitutes the hitherto most consistent matching of 1D models to 3D simulations, ensuring that their differences are not spurious, but entirely due to the 3D nature of convection. The resulting frequency shift is identified as the structural part of the surface effect. The important, typically non-adiabatic, modal components of the surface effect are not included in the present analysis, but relegated to future papers. Evaluating the structural surface effect at the frequency of maximum mode amplitude, $ u_{rm max}$, we find shifts from $delta u$=-0.8 microHz for giants at $log g$=2.2 to -35 microHz for a ($T_{rm eff}=6901$ K, $log g$=4.29) dwarf. The fractional effect $delta u( u_{rm max})/ u_{rm max}$, ranges from -0.1% for a cool dwarf (4185 K, 4.74) to -6% for a warm giant (4962 K, 2.20).
We describe the preliminary results of a ground-based observing campaign aimed at building a grid of approximately 200 spectro-photometric standard stars (SPSS), with an internal $simeq 1$% accuracy (and sub-percent precision), tied to CALSPEC Vega a nd Sirius systems within $simeq 1$%, for the absolute flux calibration of data gathered by {it Gaia}, the European Space Agency (ESA) astrometric mission. The criteria for the selection and a list of candidates are presented, together with a description of the surveys strategy and the adopted data analysis methods. All candidates were also monitored for constancy (within $pm 5$ mmag, approximately). The present version of the grid contains about half of the final sample, it has already reached the target accuracy but the precision will substantially improve with future releases. It will be used to calibrate the {it Gaia} (E)DR3 release of spectra and photometry.
Gaia data and stellar surveys open the way to the construction of detailed 3D maps of the Galactic interstellar (IS) dust based on the synthesis of star distances and extinctions. Reliable extinction measurements require very accurate photometric cal ibrations. We show the first step of an iterative process linking 3D dust maps and photometric calibrations and improving them simultaneously. Our previous 3D map of nearby IS dust was used to select low reddening SDSS/APOGEE-DR14 red giants, and this database served for an empirical effective temperature- and metallicity-dependent photometric calibration in the Gaia G and 2MASS Ks bands. This calibration has been combined with Gaia G-band empirical extinction coefficients recently published, G, J and Ks photometry and APOGEE atmospheric parameters to derive the extinction of a large fraction of the survey targets. Distances were estimated independently using isochrones and the magnitude-independent extinction K(J-Ks). This new dataset has been merged with the one used for the earlier version of dust map. A new Bayesian inversion of distance-extinction pairs has been performed to produce an updated 3D map. We present several properties of the new map. Its comparison with 2D dust emission reveals that all large dust shells seen in emission at mid- and high-latitude are closer than 300pc. The updated distribution constrains the well debated, X-ray bright North Polar Spur to originate beyond 800 pc. We use the Orion region to illustrate additional details and distant clouds. On the large scale the map reveals a complex structure of the Local Arm. 2 to 3 kpc-long chains of clouds appear in planes tilted by 15 deg with respect to the Galactic plane. A series of cavities oriented along a l=60-240deg axis crosses the Arm. (http://stilism.obspm.fr)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا