ﻻ يوجد ملخص باللغة العربية
In this paper, we derive a new chemotaxis model with degenerate diffusion and density-dependent chemotactic sensitivity, and we provide a more realistic description of cell migration process for its early and late stages. Different from the existing studies focusing on the case of non-degenerate diffusion, the new model with degenerate diffusion causes us some essential difficulty on the boundedness estimates and the propagation behavior of its compact support. In the presence of logistic damping, for the early stage before tumour cells spread to the whole body, we first estimate the expanding speed of tumour region as $O(t^{beta})$ for $0<beta<frac{1}{2}$. Then, for the late stage of cell migration, we further prove that the asymptotic profile of the original system is just its corresponding steady state. The global convergence of the original weak solution to the steady state with exponential rate $O(e^{-ct})$ for some $c>0$ is also obtained.
We investigate the propagating profiles of a degenerate chemotaxis model describing the bacteria chemotaxis and consumption of oxygen by aerobic bacteria, in particular, the effect of the initial attractant distribution on bacterial clustering. We pr
The aim of this paper is to analyze a model for chemotaxis based on a local sensing mechanism instead of the gradient sensing mechanism used in the celebrated minimal Keller-Segel model. The model we study has the same entropy as the minimal Keller-S
Well-posedness and uniform-in-time boundedness of classical solutions are investigated for a three-component parabolic system which describes the dynamics of a population of cells interacting with a chemoattractant and a nutrient. The former induces
The current series of three papers is concerned with the asymptotic dynamics in the following chemotaxis model $$partial_tu=Delta u-chi abla(u abla v)+u(a(x,t)-ub(x,t)) , 0=Delta v-lambda v+mu u (1)$$where $chi, lambda, mu$ are positive constants,
We study a system of PDEs modeling the population dynamics of two competitive species whose spatial movements are governed by both diffusion and mutually repulsive chemotaxis effects. We prove that solutions to this system are globally well-posed, wi