ﻻ يوجد ملخص باللغة العربية
We derive and experimentally investigate a strong uncertainty relation valid for any $n$ unitary operators, which implies the standard uncertainty relation as a special case, and which can be written in terms of geometric phases. It is saturated by every pure state of any $n$-dimensional quantum system, generates a tight overlap uncertainty relation for the transition probabilities of any $n+1$ pure states, and gives an upper bound for the out-of-time-order correlation function. We test these uncertainty relations experimentally for photonic polarisation qubits, including the minimum uncertainty states of the overlap uncertainty relation, via interferometric measurements of generalised geometric phases.
In spite of enormous theoretical and experimental progresses in quantum uncertainty relations, the experimental investigation of most current, and universal formalism of uncertainty relations, namely majorization uncertainty relations (MURs), has not
In this paper we provide a new set of uncertainty principles for unitary operators using a sequence of inequalities with the help of the geometric-arithmetic mean inequality. As these inequalities are fine-grained compared with the well-known Cauchy-
We derive the lower bound of uncertainty relations of two unitary operators for a class of states based on the geometric-arithmetic inequality and Cauchy-Schwarz inequality. Furthermore, we propose a set of uncertainty relations for three unitary ope
Analyzing general uncertainty relations one can find that there can exist such pairs of non-commuting observables $A$ and $B$ and such vectors that the lower bound for the product of standard deviations $Delta A$ and $Delta B$ calculated for these ve
We introduce a new concept called as the mutual uncertainty between two observables in a given quantum state which enjoys similar features like the mutual information for two random variables. Further, we define the conditional uncertainty as well as