ﻻ يوجد ملخص باللغة العربية
Analyzing general uncertainty relations one can find that there can exist such pairs of non-commuting observables $A$ and $B$ and such vectors that the lower bound for the product of standard deviations $Delta A$ and $Delta B$ calculated for these vectors is zero: $Delta A,cdot,Delta B geq 0$. Here we discuss examples of such cases and some other inconsistencies which can be found performing a rigorous analysis of the uncertainty relations in some special cases. As an illustration of such cases matrices $(2times 2)$ and $(3 times 3)$ and the position--momentum uncertainty relation for a quantum particle in the box are considered. The status of the uncertainty relation in $cal PT$--symmetric quantum theory and the problems associated with it are also studied.
New uncertainty relations for n observables are established. The relations take the invariant form of inequalities between the characteristic coefficients of order r, r = 1,2,...,n, of the uncertainty matrix and the matrix of mean commutators of the
Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here w
How violently do two quantum operators disagree? Different fields of physics feature different measures of incompatibility: (i) In quantum information theory, entropic uncertainty relations constrain measurement outcomes. (ii) In condensed matter and
Various theories that aim at unifying gravity with quantum mechanics suggest modifications of the Heisenberg algebra for position and momentum. From the perspective of quantum mechanics, such modifications lead to new uncertainty relations which are
The Heisenberg and Mandelstam-Tamm time-energy uncertainty relations are analyzed. The conlusion resulting from this analysis is that within the Quantum Mechanics of Schr{o}dinger and von Neumann, the status of these relations can not be considered a