ﻻ يوجد ملخص باللغة العربية
One-dimensional discrete-time quantum walk has played an important role in development of quantum algorithms and protocols for different quantum simulations. The speedup observed in quantum walk algorithms is attributed to quantum interference and coherence of the wave packet in position space. Similarly, localization in quantum walk due to disorder is also attributed to quantum interference effect. Therefore, it is intriguing to have a closer look and understand the way quantum interference manifests in different forms of quantum walk dynamics. Quantum coherence in the system is responsible for quantum interference in the system. Here we will use coherence measure to quantify the interference in the discrete-time quantum walk. We show coherence in the position and coin space, together and independently, and present the contribution of coherence to the quantum interference in the system. This study helps us to differentiate the localization seen in one dimensional discrete-time quantum walks due to different forms of disorders and topological effects.
Symmetrically evolving discrete quantum walk results in dynamic localization with zero mean displacement when the standard evolution operations are replaced by a temporal disorder evolution operation. In this work we show that the quantum ratchet act
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern. We employ Quantum Fisher Information, as a figure of merit, to quantify extractable information about an unknown parameter encoded with
In this study, we investigate pairwise non-classical correlations measured using a one-way quantum deficit as well as quantum coherence in the $XY$ spin-1/2 chain in a transverse magnetic field for both zero and finite temperatures. The analytical an
We investigate coherence in one- and two-photon optical systems, both theoretically and experimentally. In the first case, we develop the density operator representing a single photon state subjected to a non-dissipative coupling between observed (po
We study a spin-1/2-particle moving on a one dimensional lattice subject to disorder induced by a random, space-dependent quantum coin. The discrete time evolution is given by a family of random unitary quantum walk operators, where the shift operati