ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of large multiple scattering effects in ultrafast electron diffraction on single crystal silicon

137   0   0.0 ( 0 )
 نشر من قبل Isabel Gonzalez Vallejo
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on ultrafast electron diffraction on high quality single crystal silicon. The ultrafast dynamics of the Bragg peaks exhibits a giant photo-induced response which can only be explained in the framework of dynamical diffraction theory, taking into account multiple scattering of the probing electrons in the sample. In particular, we show that lattice heating following photo-excitation can cause an unexpected increase of the Bragg peak intensities, in contradiction with the well-known Debye-Waller effect. We anticipate that multiple scattering should be systematically considered in ultrafast electron diffraction on high quality crystals as it dominates the Bragg peak dynamics. In addition, taking into account multiple scattering effects opens the way to quantitative studies of non-equilibrium dynamics of defects in quasi-perfect crystals.



قيم البحث

اقرأ أيضاً

We report the lattice dynamics of transition metal thin films by using the ultrafast electron diffraction. We observe a suppression of the diffraction intensity in a few picosecond after the photoexcitation, which is directly interpreted as the latti ce heating via the electron-phonon interaction. The electron-phonon coupling constants for Au, Cu and Mo are quantitatively evaluated by employing the two-temperature model, which are consistent with those obtained by optical pump-probe methods. The variation in the lattice dynamics of the transition metals are systematically explained by the strength of the electron-phonon coupling, arising from the elemental dependence of the electronic structure and atomic mass.
Bandstructure effects in the electronic transport of strongly quantized silicon nanowire field-effect-transistors (FET) in various transport orientations are examined. A 10-band sp3d5s* semi-empirical atomistic tight-binding model coupled to a self c onsistent Poisson solver is used for the dispersion calculation. A semi-classical, ballistic FET model is used to evaluate the current-voltage characteristics. It is found that the total gate capacitance is degraded from the oxide capacitance value by 30% for wires in all the considered transport orientations ([100], [110], [111]). Different wire directions primarily influence the carrier velocities, which mainly determine the relative performance differences, while the total charge difference is weakly affected. The velocities depend on the effective mass and degeneracy of the dispersions. The [110] and secondly the [100] oriented 3nm thick nanowires examined, indicate the best ON-current performance compared to [111] wires. The dispersion features are strong functions of quantization. Effects such as valley splitting can lift the degeneracies especially for wires with cross section sides below 3nm. The effective masses also change significantly with quantization, and change differently for different transport orientations. For the cases of [100] and [111] wires the masses increase with quantization, however, in the [110] case, the mass decreases. The mass variations can be explained from the non-parabolicities and anisotropies that reside in the first Brillouin zone of silicon.
A foundation of the modern technology that uses single-crystal silicon has been the growth of high-quality single-crystal Si ingots with diameters up to 12 inches or larger. For many applications of graphene, large-area high-quality (ideally of singl e-crystal) material will be enabling. Since the first growth on copper foil a decade ago, inch-sized single-crystal graphene has been achieved. We present here the growth, in 20 minutes, of a graphene film of 5 x 50 cm2 dimension with > 99% ultra-highly oriented grains. This growth was achieved by: (i) synthesis of sub-metre-sized single-crystal Cu(111) foil as substrate; (ii) epitaxial growth of graphene islands on the Cu(111) surface; (iii) seamless merging of such graphene islands into a graphene film with high single crystallinity and (iv) the ultrafast growth of graphene film. These achievements were realized by a temperature-driven annealing technique to produce single-crystal Cu(111) from industrial polycrystalline Cu foil and the marvellous effects of a continuous oxygen supply from an adjacent oxide. The as-synthesized graphene film, with very few misoriented grains (if any), has a mobility up to ~ 23,000 cm2V-1s-1 at 4 K and room temperature sheet resistance of ~ 230 ohm/square. It is very likely that this approach can be scaled up to achieve exceptionally large and high-quality graphene films with single crystallinity, and thus realize various industrial-level applications at a low cost.
60 - Jun Li , Junjie Li , Kai Sun 2020
It has been technically challenging to concurrently probe the electrons and the lattices in materials during non-equilibrium processes, allowing their correlations to be determined. Here, in a single set of ultrafast electron diffraction patterns tak en on the charge-density-wave (CDW) material 1T-TaSeTe, we discover a temporal shift in the diffraction intensity measurements as a function of scattering angle. With the help of dynamic models and theoretical calculations, we show that the ultrafast electrons probe both the valence-electron and lattice dynamic processes, resulting in the temporal shift measurements. Our results demonstrate unambiguously that the CDW is not merely a result of the periodic lattice deformation ever-present in 1T-TaSeTe but has significant electronic origin. This method demonstrates a novel approach for studying many quantum effects that arise from electron-lattice dephasing in molecules and crystals for next-generation devices.
This paper presents results of a recent study of multiferroic CCO by means of single crystal neutron diffraction. This system has two close magnetic phase transitions at $T sub{N1}=24.2$ K and $T sub{N2}=23.6$ K. The low temperature magnetic structur e below $T sub{N2}$ is unambiguously determined to be a fully 3-dimensional proper screw. Between $T sub{N1}$ and $T sub{N2}$ antiferromagnetic order is found that is essentially 2-dimensional. In this narrow temperature range, magnetic near neighbor correlations are still long range in the ($H,K$) plane, whereas nearest neighbors along the $L$-direction are uncorrelated. Thus, the multiferroic state is realized only in the low-temperature 3-dimensional state and not in the 2-dimensional state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا