ﻻ يوجد ملخص باللغة العربية
A foundation of the modern technology that uses single-crystal silicon has been the growth of high-quality single-crystal Si ingots with diameters up to 12 inches or larger. For many applications of graphene, large-area high-quality (ideally of single-crystal) material will be enabling. Since the first growth on copper foil a decade ago, inch-sized single-crystal graphene has been achieved. We present here the growth, in 20 minutes, of a graphene film of 5 x 50 cm2 dimension with > 99% ultra-highly oriented grains. This growth was achieved by: (i) synthesis of sub-metre-sized single-crystal Cu(111) foil as substrate; (ii) epitaxial growth of graphene islands on the Cu(111) surface; (iii) seamless merging of such graphene islands into a graphene film with high single crystallinity and (iv) the ultrafast growth of graphene film. These achievements were realized by a temperature-driven annealing technique to produce single-crystal Cu(111) from industrial polycrystalline Cu foil and the marvellous effects of a continuous oxygen supply from an adjacent oxide. The as-synthesized graphene film, with very few misoriented grains (if any), has a mobility up to ~ 23,000 cm2V-1s-1 at 4 K and room temperature sheet resistance of ~ 230 ohm/square. It is very likely that this approach can be scaled up to achieve exceptionally large and high-quality graphene films with single crystallinity, and thus realize various industrial-level applications at a low cost.
An in vacuo thermal desorption process has been accomplished to form epitaxial graphene (EG) on 4H- and 6H-SiC substrates using a commercial chemical vapor deposition reactor. Correlation of growth conditions and the morphology and electrical propert
A detailed review of the literature for the last 5-10 years on epitaxial growth of graphene is presented. Both experimental and theoretical aspects related to growth on transition metals and on silicon carbide are thoroughly reviewed. Thermodynamic a
A single-crystal sheet of graphene is synthesized on the low-symmetry substrate Ir(110) by thermal decomposition of C$_2$H$_4$ at 1500 K. Using scanning tunneling microscopy, low-energy electron diffraction, angle-resolved photoemission spectroscopy,
Growth of epitaxial graphene on the C-face of SiC has been investigated. Using a confinement controlled sublimation (CCS) method, we have achieved well controlled growth and been able to observe propagation of uniform monolayer graphene. Surface patt
In this work we present a simple pathway to obtain large single-crystal graphene on copper (Cu) foils with high growth rates using a commercially available cold-wall chemical vapour deposition (CVD) reactor. We show that graphene nucleation density i